
(i)

SUBJECT CODE : 304195(C)

PUBLICATIONS
TECHNICAL

An Up-Thrust for Knowledge

®

SINCE 1993

®

Savitribai Phule Pune University

As per Revised Syllabus of

T.E. (E&Tc) Semester - VI (Elective - II)

Choice Based Credit System (CBCS)

Advanced JAVA

Programming

Mrs. Anuradha A. Puntambekar

M.E. (Computer)

Formerly Assistant Professor in

P.E.S. Modern College of Engineering,

Pune.

Ph.D. (Pursuing),

M.E. (E&TC) VLSI & Embedded System, B.E.(Electronics)

Assistant Professor,

AISSMS College of Engineering,

Pune

Santosh B. Dhekale

SPPU 19

(ii)9 [1]789355850133

� Copyright with A. A. Puntambekar

All publishing rights reserved with . No part of this book

should be reproduced in any form, Electronic, Mechanical, Photocopy or any information storage and

retrieval system without prior permission in writing, from Technical Publications, Pune.

(printed and ebook version) Technical Publications

Printer :
Yogiraj Printers & Binders

Sr. No. 10/1A,

Ghule Industrial Estate, Nanded Village Road,

Tal. - Haveli, Dist. - Pune - 411041.

Subject Code : 304195(C)

Advanced JAVA Programming

T.E. (E & Tc) Semester - VI (Elective - II)

Published by :

Amit Residency, Office No.1, 412, Shaniwar Peth,

Pune - 411030, M.S. INDIA Ph.: +91-020-24495496/97

Email : sales@technicalpublications.org Website : www.technicalpublications.org
PUBLICATIONS
TECHNICAL

An Up-Thrust for Knowledge

®

SINCE 1993

®

I S B N 9 7 8 - 9 3 - 5 5 8 5 - 0 1 3 - 3

9 7 8 9 3 5 5 8 5 0 1 3 3

(iii)

preface
The importance of Advanced JAVA Programming is well known in various

engineering fields. Overwhelming response to our books on various subjects inspired us to
write this book. The book is structured to cover the key aspects of the subject Advanced
JAVA Programming.

The book uses plain, lucid language to explain fundamentals of this subject. The book
provides logical method of explaining various complicated concepts and stepwise methods
to explain the important topics. Each chapter is well supported with necessary illustrations,
practical examples and solved problems. All the chapters in the book are arranged in a
proper sequence that permits each topic to build upon earlier studies. All care has been
taken to make students comfortable in understanding the basic concepts of the subject.

Representative questions have been added at the end of each section to help the
students in picking important points from that section.

The book not only covers the entire scope of the subject but explains the philosophy of
the subject. This makes the understanding of this subject more clear and makes it more
interesting. The book will be very useful not only to the students but also to the subject
teachers. The students have to omit nothing and possibly have to cover nothing more.

We wish to express our profound thanks to all those who helped in making this book a
reality. Much needed moral support and encouragement was provided on numerous
occasions by our whole family. We wish to thank the Publisher and the entire team of
Technical Publications who have taken immense pain to get this book in time with quality
printing.

Any suggestion for the improvement of the book will be acknowledged and well
appreciated.

 Authors
Mrs. A. A. Puntambekar

Santosh B. Dhekale

Dedicated to God.

(iv)

Syllabus
Advanced JAVA Programming - 304195(C)

Credit Examination Scheme :

03
In-Sem (Theory) : 30 Marks
End-Sem (Theory) : 70 Marks

Unit I Applet
Applet Basics - Introduction, limitations of AWT, Applet architecture - HTML APPLET
tag - Passing parameter to Appletget, DocumentBase() and getCodeBase(), Japplet : Icons
and Labels Text Fields Buttons, Combo Boxes , Checkboxes, Tabbed Panes, Scroll Panes,
Trees : Tables. (Chapter - 1)

Unit II Event Handling using AWT / Swing Components
Event Handling : Events, Event sources, Event classes, Event Listeners, Delegation event
model, handling mouse and keyboard events, Adapter classes, inner classes. The AWT class
hierarchy, user interface components - labels, button, canvas, scrollbars, text components,
checkbox, checkbox groups, choices, lists panels - scroll pane, dialogs, menu bar, graphics,
layout manager - layout manager types - boarder, grid, flow, card and grib bag.

(Chapter - 2)

Unit III GUI Programming
Designing Graphical User Interfaces in Java, Components and Containers, Basics of
Components, Using Containers, Layout Managers, AWT Components, Adding a Menu to
Window, Extending GUI Features Using Swing Components, Java Utilities (java.util
Package) The Collection Framework : Collections of Objects, Collection Types, Sets,
Sequence, Map, Understanding Hashing, and Use of Array List and Vector. (Chapter - 3)

Unit IV Database Programming using JDBC
The Concept of JDBC, JDBC Driver Types and Architecture, JDBC Packages, A Brief
Overview of the JDBC process, Database Connection, Connecting to non-conventional
Databases Java Data Based Client/server, Basic JDBC program Concept, Statement, Result
Set, Prepared Statement, Callable Statement, Executing SQL commands, Executing queries.
(Chapter - 4)

Unit V Remote Method Invocation (RMI)
Remote Method Invocation : Architecture, RMI registry, the RMI Programming Model;
Interfaces and Implementations; Writing distributed application with RMI, Naming services,

(v)

Naming and Directory Services, Setting up Remote Method Invocation - RMI with Applets,
Remote Object Activation; The Roles of Client and Server, Simple Client/Server
Application using RMI. (Chapter - 5)

Unit VI Networking
The java.net package, Connection oriented transmission - Stream Socket Class, creating a
Socket to a remote host on a port (creating TCP client and server), Simple Socket Program
Example. InetAddress, Factory Methods, Instance Methods, Inet4Address and Inet6Address,
TCP/IP Client Sockets. URL, URLConnection, HttpURLConnection, The URI Class,
Cookies, TCP/IP Server Sockets, Datagrams, DatagramSocket, DatagramPacket,
A Datagram Example. Connecting to a Server, Implementing Servers, Sending EMail,
Servlet overview - the Java web server - The Life Cycle of a Servlet, your first servlet.

(Chapter - 6)

(vi)

Table of Contents

Unit I

Chapter - 1 Applet (1 - 1) to (1 - 22)

1.1 Introduction .. 1 - 2

1.2 Applet Architecture... 1 - 3

1.3 HTML APPLET Tag ... 1 - 5

1.4 Creating and Executing Applet ... 1 - 6

1.4.1 Creating an Applet .. 1 - 6

1.4.2 Executing an Applet .. 1 - 8

1.4.2.1 Adding Applet to HTML File... 1 - 8

1.4.2.2 Embedding Applet Code in Java .. 1 - 9

1.5 Passing Parameter to Applet .. 1 - 11

1.6 getDocumentBase() and getCodeBase() ... 1 - 15

1.7 Adding Controls to Applet .. 1 - 16

1.7.1 Buttons .. 1 - 16

1.7.2 Text Fields .. 1 - 17

1.7.3 Combo Boxes ... 1 - 18

1.7.4 Checkboxes .. 1 - 19

1.8 Multiple Choice Questions with Answers ... 1 - 20

Unit II

Chapter - 2 Event Handling using AWT / Swing Components
 (2 - 1) to (2 - 72)

Part I : Event Handling

2.1 Events .. 2 - 2

2.2 Event Sources .. 2 - 2

(vii)

2.3 Event Classes ... 2 - 2

2.3.1 ActionEvent Class ... 2 - 3

2.3.2 ItemEvent Class ... 2 - 3

2.3.3 KeyEvent Class ... 2 - 4

2.3.4 MouseEvent Class .. 2 - 4

2.3.5 TextEvent Class .. 2 - 5

2.3.6 WindowEvent Class ... 2 - 5

2.4 Event Listeners .. 2 - 6

2.4.1 ActionListener Interface .. 2 - 6

2.4.2 ItemListener Interface ... 2 - 6

2.4.3 KeyListener Interface ... 2 - 7

2.4.4 MouseListener Interface .. 2 - 7

2.4.5 MouseMotion Interface... 2 - 7

2.4.6 TextListener Interface .. 2 - 7

2.4.7 WindowListener Interface ... 2 - 7

2.5 Delegation Event Model ... 2 - 8

2.6 Handling Mouse Events .. 2 - 10

2.7 Handling Keyboard Events .. 2 - 13

2.8 Adapter Classes ... 2 - 15

2.9 Inner Classes ... 2 - 18

2.9.1 Static Member Classes ... 2 - 18

2.9.2 Member Classes... 2 - 19

2.9.3 Local Classes .. 2 - 20

2.9.4 Anonymous Classes ... 2 - 21
Part II : AWT

2.10 What is Abstract Windowing Toolkit ? ... 2 - 21

2.11 The AWT Class Hierarchy .. 2 - 22

2.12 Limitations of AWT ... 2 - 22

2.13 User Interface Components ... 2 - 23

(viii)

2.13.1 Labels ... 2 - 23

2.13.2 Buttons .. 2 - 24

2.13.3 Canvas .. 2 - 25

2.13.4 Scrollbars ... 2 - 27

2.13.5 Text Components ... 2 - 28

2.13.6 Checkbox ... 2 - 29

2.13.7 Checkbox Group .. 2 - 30

2.13.8 Choices ... 2 - 31

2.13.9 List Panels .. 2 - 32

2.14 Dialogs.. 2 - 33

2.14.1 File Dialog .. 2 - 35

2.15 Menu bar ... 2 - 37

2.16 Programming Examples based on AWT Components and
 Event Handling .. 2 - 41

2.17 Graphics ... 2 - 46

2.17.1 Lines ... 2 - 47

2.17.2 Rectangle ... 2 - 48

2.17.3 Oval .. 2 - 49

2.17.4 Arc .. 2 - 51

2.17.5 Polygons ... 2 - 52

2.18 Layout Manager ... 2 - 54

2.18.1 FlowLayout .. 2 - 54

2.18.2 BorderLayout ... 2 - 57

2.18.3 GridLayout ... 2 - 61

2.18.4 CardLayout ... 2 - 63

2.18.5 GridBagLayout ... 2 - 67

2.19 Multiple Choice Questions with Answers .. 2 - 70

(ix)

Unit III

Chapter - 3 GUI Programming (3 - 1) to (3 - 80)

3.1 Designing Graphical User Interfaces in Java ... 3 - 2

3.1.1 Difference between AWT and Swing ... 3 - 2

3.2 Components and Containers .. 3 - 2

3.3 Basics of Components ... 3 - 3

3.4 Extending GUI Features Using Swing Components .. 3 - 3

3.4.1 JApplet ... 3 - 3

3.4.2 Creating Frames ... 3 - 6

3.4.3 Label and ImageIcon .. 3 - 8

3.4.4 TextField .. 3 - 9

3.4.5 TextArea .. 3 - 10

3.4.6 Buttons .. 3 - 12

3.4.7 Checkboxes .. 3 - 15

3.4.8 Radio Buttons .. 3 - 16

3.4.9 Lists .. 3 - 18

3.4.10 Choices ... 3 - 19

3.4.11 ScrollPane .. 3 - 25

3.4.12 Scrollbar ... 3 - 28

3.4.13 Menus .. 3 - 29

3.4.14 Dialog Boxes .. 3 - 37

3.4.15 Tabbed Pane .. 3 - 42

3.4.16 JTree .. 3 - 45

3.4.17 JTable ... 3 - 47

3.5 Java Utilities (java.util Package) .. 3 - 49

3.6 The Collection Framework .. 3 - 49

3.7 Collections of Objects and Types .. 3 - 51

3.8 List Interface ... 3 - 54

(x)

3.8.1 ArrayList ... 3 - 54

3.8.2 LinkedList ... 3 - 56

3.9 Vector .. 3 - 61

3.10 Set Interface ... 3 - 64

3.10.1 HashSet .. 3 - 65

3.10.2 TreeSet ... 3 - 66

3.11 Map Interface .. 3 - 68

3.11.1 Hashtable ... 3 - 68

3.11.2 HashMap .. 3 - 69

3.11.3 TreeMap .. 3 - 70

3.12 Multiple Choice Questions with Answers .. 3 - 71

Unit IV

Chapter - 4 Database Programming using JDBC (4 - 1) to (4 - 38)

4.1 The Concept of JDBC ... 4 - 2

4.2 Types of JDBC Drivers ... 4 - 2

4.3 JDBC Architecture ... 4 - 6

4.3.1 Two Tier Model .. 4 - 6

4.3.2 Three Tier Model .. 4 - 6

4.4 JDBC Packages ... 4 - 6
4.5 A Brief Overview of the JDBC Process .. 4 - 8
4.6 Executing SQL Commands .. 4 - 8
4.7 Database Connection .. 4 - 14
4.8 Basic JDBC Program Concept .. 4 - 15
4.9 Executing Queries .. 4 - 16

4.9.1 CREATE Statement ... 4 - 17

4.9.2 SELECT Statement .. 4 - 18

4.9.3 UPDATE Statement .. 4 - 20

4.10 Statement .. 4 - 24

4.10.1 Prepared Statement .. 4 - 25

(xi)

4.11 Result Set ... 4 - 30

4.11.1 Navigating Methods .. 4 - 31

4.11.2 Reading the Result using ResultSet ... 4 - 31

4.11.3 Updating ResultSets... 4 - 32

4.12 Multiple Choice Questions with Answers .. 4 - 32

Unit V

Chapter - 5 Remote Method Invocation (RMI) (5 - 1) to (5 - 30)

5.1 Remote Method Invocation .. 5 - 2

5.2 Architecture .. 5 - 2

5.3 RMI Registry .. 5 - 4

5.4 The RMI Programming Model ... 5 - 5

5.5 Interfaces and Implementations ... 5 - 5

5.6 Writing Distributed Application with RMI .. 5 - 6

5.7 Naming Services .. 5 - 6

5.8 Naming and Directory Services ... 5 - 7

5.9 RMI with Applets .. 5 - 7

 5.10 Remote Object Activation ... 5 - 10

 5.11 The Roles of Client and Server .. 5 - 11

 5.12 Simple Client / Server Application using RMI .. 5 - 12

 5.13 Multiple Choice Questions with Answers ... 5 - 29

Unit VI

Chapter - 6 Networking (6 - 1) to (6 - 62)

6.1 The java.net Package .. 6 - 2

6.1.1 The Networking Classes and Interfaces ... 6 - 2

6.2 Socket Class ... 6 - 3

6.2.1 Client Server .. 6 - 4

6.2.2 Reserved Sockets ... 6 - 5

6.2.3 Proxy Servers ... 6 - 6

(xii)

6.2.4 Internet Addressing ... 6 - 6

6.3 InetAddress ... 6 - 7

6.3.1 Factory Methods .. 6 - 7

6.3.2 Instance Method ... 6 - 12

6.3.3 Inet4Address and Inet6 Address ... 6 - 12

6.4 URL .. 6 - 13

6.4.1 Format ... 6 - 13

6.4.2 The URL Path ... 6 - 13

6.4.3 The URL Class ... 6 - 14

6.5 URLConnection ... 6 - 15

6.6 HttpURLConnection .. 6 - 18

6.7 The URI Class ... 6 - 19

6.8 Cookies .. 6 - 20

6.9 TCP,IP and UDP ... 6 - 21

6.10 TCP/IP Client Sockets ... 6 - 23

6.11 TCP/IP Server Sockets .. 6 - 25

6.12 Datagrams ... 6 - 35

6.12.1 Datagram Packet ... 6 - 35

6.12.2 Datagram Server and Client ... 6 - 36

6.13 Sending Email .. 6 - 43

6.14 Servlet Overview ... 6 - 45

6.14.1 The Java Web Server ... 6 - 45

6.14.2 Advantages of using Servlets ... 6 - 46

6.14.3 The Life Cycle of a Servlet .. 6 - 46

6.14.4 Your First Servlet ... 6 - 47

6.15 Handling HTTP Requests and Response .. 6 - 52

6.16 Multiple Choice Questions with Answers ... 6 - 57

Solved Model Question Papers (M - 1) to (M - 4)

(1 - 1)

UNIT I

1 Applet

Syllabus
Applet Basics - Introduction, limitations of AWT, Applet architecture - HTML APPLET tag - Passing
parameter to Appletget, DocumentBase() and getCodeBase() , Japplet : Icons and Labels Text Fields
Buttons, Combo Boxes, Checkboxes, Tabbed Panes, Scroll Panes, Trees : Tables.

Contents

1.1 Introduction

1.2 Applet Architecture

1.3 HTML APPLET Tag

1.4 Creating and Executing Applet

1.5 Passing Parameter to Applet

1.6 getDocumentBase() and getCodeBase()

1.7 Adding Controls to Applet

1.8 Multiple Choice Questions

Advanced JAVA Programming 1 - 2 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 1.1 Introduction

 Applets are the small Java programs that can be used in internetworking
environment.

 These programs can be transferred over the internet from one computer to another
and can be displayed on various web browsers.

 Various applications of applets are in performing arithmetic operations, displaying
graphics, playing sounds, creating animation and so on.

 Following are the situations in which we need to use applet -

1. For displaying the dynamic web pages we need an applet. The dynamic web
page is a kind of web page on which the contents are constantly changing. For
example an applet that can represent the sorting process of some numbers.
During the process of sorting the positions of all the elements is changing
continuously.

2. If we want some special effects such as sound, animation and much more then
the applets are used.

3. If we want a particular application should be used by any user who might be
located remotely. Then in such situation the applets are embedded into the web
pages and can be transferred over the internet.

Difference between Applet and Application

Sr. No. Applets Applications

1. Applets do not have main method. On

loading of applets some methods of

applet class get called automatically.

Application programs have main method.

Within the main method the call to another

methods of Java class is given.

2. Applets cannot run independently.

They can be either embedded in web

page or can be run using appletviewer.

Applications program run independently.

3. Applets cannot be read from file.

Similarly appletscan not write to files.

Application programs make use of I/O

functions and can read a file or write to file.

4. Applets cannot communicate with

others on the network.

Java programs can communicate with other

programs in distributed environment.

5. Applets cannot execute any program on

local computer.

Applications can execute a program on local

computer.

Advanced JAVA Programming 1 - 3 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Review Question

1. Differentiate applet and application with any four points.

 1.2 Applet Architecture

 There are various methods which are typically used in applet for initialization and
termination purpose. These methods are :

1. Initialization

2. Running state

3. Idle state

4. Dead or destroyed state (Refer Fig. 1.2.1 for applet’s life cycle)

Fig. 1.2.1 Applet’s life cycle

 When applet begins, the AWT calls following methods in sequence -

a) init() b) start() c) paint()

 When applet is terminated following method are invoked in sequence.

a) stop() b) destroy()

1. Initialization state

 When applet gets loaded it enters in the initialization state. For this purpose the

init() method is used. In this method you can initialize the required variables. This

method is called only once initially at the execution of the program. The syntax can

be,
 public void init()

 {
 //initialization of variables
 }

Advanced JAVA Programming 1 - 4 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 In this method various tasks of initialization can be performed such as -

1. Creation of objects needed by applet

2. Setting up of initial values

3. Loading of image

4. Setting up of colors.

2. Running state

 When the applet enters in the running state, it invokes the start() method of Applet
class.

 This method is called only after the init method. After stopping the applet when we

restart the applet at that time also this method is invoked. The syntax can be
 public void start()
 {

 …
 }

3. Display state

 Applet enters in the display state when it wants to display some output. This may

happen when applet enters in the running state. The paint() method is for

displaying or drawing the contents on the screen. The syntax is
 public void paint(Graphics g)

 {
 …
 }

 An instance of Graphics class has to be passed to this function as an argument. In

this method various operations such as display of text, circle, line are invoked.

4. Idle state

 This is an idle state in which applet becomes idle. The stop() method is invoked

when we want to stop the applet. When an applet is running if we go to another

page then this method is invoked. The syntax is

 public void stop()
 {
 …

 }

Advanced JAVA Programming 1 - 5 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

5. Dead state

 When applet is said to be dead then it is removed from memory. The method

destroy() is invoked when we want to terminate applet completely and want to

remove it from the memory.
 public void destroy()

 {
 …
 }

 It is a good practice to call stop prior to destroy method.

Review Questions

1. Describe following states of applet life cycle :

 a) Initialization state. b) Running state. c) Display state.

2. Explain applet life cycle with suitable diagram.

 1.3 HTML APPLET Tag

 The <APPLET> tag can be specified with the help of various attributes. These
attributes help to integrate the applet into overall design of the web page.

 Various attributes of APPLET tag are -

Attribute Description

CODE = appletfilename The specified applet can be loaded in the web page. This

attribute must be specified in order to embed the applet in the

HTML file.

WIDTH = pixels

HEIGHT = pixels

This attribute specifies the width and height of the applet.

ALIGN = alignment This attribute is for specifying the alignment. Various

alignments are - TOP, BOTTOM, LEFT, RIGHT, MIDDLE,

ABSMIDDLE, ABSBOTTOM, TEXTTOP and BASELINE. This is

an optional attribute.

CODEBASE = codebase_URL It specifies the name of the directory in which the applet is

stored. This attribute is required when the attribute is not there

in the current working directory. This is an optional attribute.

Advanced JAVA Programming 1 - 6 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

HSPACE = pixels When ALIGN is either LEFT or RIGHT this attribute is used. It

specifies the amount of horizontal blank spaces the browser

should leave around the applet. This is an optional attribute.

VSPACE = pixels When ALIGN is either TOP or BOTTOM this attribute is used. It

specifies the amount of vertical blank spaces the browser should

leave around the applet. This is an optional attribute.

ALT = alternate text The non Java browser can display the alternate text in place of

applet. This is an optional attribute.

 Review Questions

1. Explain all attributes available in < applet > tag.
2. Explain <applet> tag with its major attributes only.
3. Describe the following attributes of applet :
 (i) Codebase (ii) Alt (iii) Width (iv) Code
4. Explain any four applet tag.

 1.4 Creating and Executing Applet

 1.4.1 Creating an Applet

 Normally the applet code makes use of two classes - Applet and Graphics.

 For the Applet class the package java.applet is required. This class provides the
applet’s life cycle method such as init(), start() and paint().

 The Graphics class is supported by the package java.awt.

 Here is a simple applet.

Example Program

/*
This is my First Applet program
*/

import java.awt.*;
import java.applet.*;
public class FirstApplet extends Applet

{
 public void paint(Graphics g)
 {

 g.drawString("This is my First Applet",50,30);
 }
}

Advanced JAVA Programming 1 - 7 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Program explanation :

 In above given small applet program, the main intension is to display the message
“This is my First Applet”. Let us start from the beginning of the program -

 The first three lines represent a comment statement.

 Then next comes
 import java.awt.*;

 import java.applet.*;

 We always need these two packages to be imported in the program. The java.awt
package consists of java awt classes. Here awt stands for abstract window toolkit.
The AWT provides the support for window based graphical interface such as for
drawing screen, windows, buttons, text boxes, menus and so on. The other
imported package is java.applet. This is essential because we need to use Applet
class in our applet program which is included in java.applet package.

 The functionalities that are required to run applet inside the web browser are
supported by java.applet.

 Then comes
 public class FirstApplet extends Applet

 The class FirstApplet is a subclass of class Applet. Hence the keyword extends is
used. Java requires that your applet subclass (here it is FirstApplet) should be
declared as public. Hence is the declaration !

 We have then defined a method
 public void paint(Graphics g)

 This method is used to paint something on the screen and it can be text, line, circle,
rectangle or anything. Thus paint is a method which provides actual appearance on
the screen. And this method requires a parameter to be passed as an object of class
graphics. Therefore an object g of class Graphics is passed.

 Using this object the method drawString of Graphics class is invoked. [Note that
Graphics class is a part of java.awt package].

 g.drawString("This is my First Applet",50,30);

 To method drawString, firstly we have passed a string which we want to be
displayed, then 50 and 30 represents the position of the string on the screen i.e. x
and y positions respectively.

Advanced JAVA Programming 1 - 8 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 1.4.2 Executing an Applet

 There are two methods of executing an applet program -

1. Adding Applet to HTML File

2. Using Appletviewer tool

 Let us discuss these methods in detail.

 1.4.2.1 Adding Applet to HTML File

 Following are the steps that need to be followed for adding applet to HTML file.

 Step 1 : Write a Java applet program in a notepad. The code is as follows :

Java Program[FirstApplet.java]

 /*
 This is my First Applet program

 */
 import java.awt.*;
 import java.applet.*;

 public class FirstApplet extends Applet
 {
 public void paint(Graphics g)

 {
 g.drawString("This is my First Applet",50,30);
 }

 }

Step 2 : Compile your applet source program using javac compiler, i.e.
 D:\test>javac FirstApplet.java

Step 3 : Write following code in notepad/wordpad and save it with filename and
 extension .html. For example following code is saved as
 Exe_FirstApplet.html, The code is
<html>

<body>
 <applet code="FirstApplet" width=300 height=100>

 </applet>
</body>
</html>

 For embedding the applet in the HTML document the <APPLET> tag is used. The
<APPLET> tag supplies the name of the applet to be loaded. Suppose we want to
load the applet FirstAppletprogram in the web page then the applet tag will be,

Advanced JAVA Programming 1 - 9 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 <APPLET CODE= FirstAppletprogram.class
 WIDTH = 500
 HEIGHT = 300

 </APPLET>

 The HTML code tells the web browser to load the compiled code of applet
FirstAppletprogram.class. Note that this class file must be present in the same
directory where the web page is stored.

Step 4 : Load html file with some web browser, This will cause to execute your html
 file. It will look like this –

 1.4.2.2 Embedding Applet Code in Java

 We can embed the applet code in Java using comment statements. It is as shown in
following illustration.

 Step 1 : Write Java Program as given below.
 /*
 This is my First Applet program

 */
 import java.awt.*;
 import java.applet.*;

 /*
 <applet code="FirstApplet" width=300 height=100>
 </applet>

 */
 public class FirstApplet extends Applet

Note this
URL

Embedded Applet in

Java

Advanced JAVA Programming 1 - 10 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 {
 public void paint(Graphics g)

 {
 g.drawString("This is my First Applet",50,30);
 }

 }

 In above code we have added applet code at the beginning of the program.
 <applet code="FirstApplet" width=300 height=100>

 </applet>

 This will help to understand Java that the source program is an applet with the
name FirstApplet.

 Step 2 : By this edition you can run your applet program merely by Appletviewer
 command.
 D:\test>javac FirstApplet.java
 D:\test>Appletviewer FirstApplet.java

And we will get

 Example 1.4.1 Define applet. Write a program to create an applet to display message

“Welcome to java applet”.

Solution : FirstApplet.java

 /*
 This is my First Applet program
 */

 import java.awt.*;
 import java.applet.*;
 /*

 <applet code="FirstApplet" width=300 height=100>
 </applet>
 */

 public class FirstApplet extends Applet

Advanced JAVA Programming 1 - 11 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 {
 public void paint(Graphics g)
 {

 g.drawString("Welcome to Java Applet",50,30);
 }
 }

Output

 1.5 Passing Parameter to Applet

 Parameters are passed to applets in NAME=VALUE pairs in <PARAM> tags
between the opening and closing APPLET tags.

 There can be any number of <PRAM> tags inside APPLET tag.

 Inside the applet, you read the values passed through the PARAM tags with the
getParameter() method of the Applet class.

 The program below demonstrates this idea -

 Example 1.5.1 How can parameters be passed to an applet ? Write an applet to accept user name
in the form of parameter and print ‘Hello < username >’.

Solution :
 import java.applet.Applet;
 import java.awt.Graphics;
 /*

 <applet code="WelcomeParam" width=200 height=200>
 <param name="Username" value="Parth">
 </applet>

 */
 public class WelcomeParam extends Applet
 {

 String msg="";
 public void init()
 {

Advanced JAVA Programming 1 - 12 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 msg = getParameter("Username");
 msg = "Welcome " + msg;
 }

 public void paint(Graphics g)
 {
 g.drawString(msg,50,50);

 }
 }

Output

 Example 1.5.2 Write an applet program that accepts two input, strings using <Param> tag and
concatenate the strings and display it in status window.

Solution : TwoStrings.java

 import java.applet.*;
 import java.awt.*;

 /*
 <APPLET code="TwoStrings" width="300" height="100">

 <PARAM name="str1" value="First">
 <PARAM name="str2" value="Second">
 </APPLET>

 */
 public class TwoStrings extends Applet
 {

 public void paint(Graphics g)
 {

 String s1 = this.getParameter("str1");
 String s2 = this.getParameter("str2");

 String s3;

Advanced JAVA Programming 1 - 13 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 s3=s1+s2;
 showStatus(s3);
 }

 }

Output

 Example 1.5.3 Design an applet which accepts username as a parameter for html page and
display number of characters from it.

Solution : Step 1 : Create HTML page as follows -

test.html

 <html>

 <head>
 <title> Parameter Demo </title>
 </head>

 <applet code = "LengthDemo.class" width =300 height =300>
 <PARAM name="uname" value="Chitra">
 </applet>

 </html>

Step 2 : Create Java program for the applet class as follows -

LengthDemo.java

 import java.applet.*;
 import java.awt.*;
 public class LengthDemo extends Applet
 {
 public void paint(Graphics g)
 {
 String str = this.getParameter("uname");
 int len;
 len=str.length();

Advanced JAVA Programming 1 - 14 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 String msg="The length of string 'Chitra' is: "+len;
 g.drawString(msg,50,30);
 }
 }

Step 3 : Compile the program created in step 2 using following command on
command prompt
 D:\>javac LengthDemo.java

Step 4 : Open the web browser and type the name of the html file created in step 1. The
output will be -

 Example 1.5.4 How to pass parameter to an applet ? Write an applet to accept Account No and
balance in form of parameter and print message “low balance” if the balance is less than 500.

Solution :

import java.applet.*;
import java.awt.*;

/*
<APPLET code="BalanceChk" width="300" height="100">
<PARAM name="AccNo" value=1001>
<PARAM name="Balance" value=300>
</APPLET>
*/
public class BalanceChk extends Applet
 {
 public void paint(Graphics g)
 {
 int balance = Integer.parseInt(this.getParameter("Balance"));
 if(balance<500)
 g.drawString("Low Balance",50,30);
 else
 g.drawString("Sufficient Balance",50,30);
 }
}

Advanced JAVA Programming 1 - 15 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

 Review Questions

1. Explain <PARAM> Tag of applet with suitable example.
2. Explain following methods for applet with an example :
 1) Passing parameter to applet
 2) Embedding <applet> tags in java code.

 1.6 getDocumentBase() and getCodeBase()

 The getDocumentBase() and getCodeBase() are the two methods that return the
names of the directories. The getDocumentBase() is the name of the directory
which contains the HTML file that starts the applet. The getCodeBase() is the name
of the directory that contains the class file of the applet is loaded.
o URL getCodeBase() : Gets the base URL.
o URL getDocumentBase() : Gets the URL of the document in which the apple is

 embedded.

 Following applet program shows the demonstration of these two directories.
Java Program

import java.awt.*;
import java.applet.*;

import java.net.*;
/*
<applet code="DocBaseCode" width=500 height=300>

</applet>
*/
public class DocBaseCode extends Applet

{
 public void paint(Graphics g)
 {

Advanced JAVA Programming 1 - 16 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 String msg;
 //getCodeBase Method
 URL appletCodeDir = getCodeBase();

 msg = "Applet Code Base: "+appletCodeDir.toString();
 g.drawString(msg, 20, 50);

 //getDocumentBase Method
 URL appletDocDir = getDocumentBase();
 msg = "Applet Document Base: "+appletDocDir.toString();

 g.drawString(msg, 20, 80);
 }
}

Output

 1.7 Adding Controls to Applet

 We can add various controls such as textbox, Push Button, Radio button, Check box
to the applet. Let us understand this with illustrative examples :

 1.7.1 Buttons

 The Button class is used to add the labeled button to the applet. The caption of the
button is passed as a parameter to it. The syntax is

 Button button_object=new Button(caption string)

Advanced JAVA Programming 1 - 17 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Using add method we can add the button control on the applet window. Following
program shows how to add button to the applet.

Example Program

 import java.awt.*;
 import java.awt.event.*;
 import java.applet.*;

 /*
 <applet code="Button1" width=350 height=200>
 </applet>

 */
 public class Button1 extends Applet
 {

 Button button=new Button("Click Me");
 public void init()
 {

 add(button);
 }
 }

Output

 1.7.2 Text Fields

 The TextField class allows to add the single line text. Following program shows
how to add a textfield control to the applet.

Example Program

 import java.awt.*;
 import java.awt.event.*;

 import java.applet.*;
 /*
 <applet code="TextFieldDemo" width=350 height=200>

 </applet>
 */

Advanced JAVA Programming 1 - 18 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 public class TextFieldDemo extends Applet
 {
 TextField tf=new TextField("Hello, How are you?");

 public void init()
 {
 add(tf);

 }
 }

Output

 1.7.3 Combo Boxes

 Combobox is a dropdown list. It forces the user to select only one element from the
list. It is easier to change the element of the list. It is a basically a Choice control.
Hence it is created using Choice() class.

 Following program demonstrates the use of combox control.

Java Program[ComboBoxDemo.java]

 import java.applet.*;

 import java.awt.*;
 /*
 <applet code="ComboBoxDemo" width=350 height=200>

 </applet>
 */
 public class ComboBoxDemo extends Applet

 {
 Choice city=new Choice();
 public void init()

 {

Advanced JAVA Programming 1 - 19 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 city.add("Pune");
 city.add("Mumbai");
 city.add("Delhi");

 city.add("Kolkata");
 add(city);
 }

 }

Output

 1.7.4 Checkboxes

 The Checkbox class is used to create check boxes. It is used to turn an option true or
false. Following program shows the use of checkbox.

Example Program

import java.awt.*;

import java.awt.event.*;
import java.applet.*;
/*

<applet code="CheckBoxDemo" width=350 height=200>
</applet>
*/

public class CheckBoxDemo extends Applet
{

Advanced JAVA Programming 1 - 20 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Checkbox cb1=new Checkbox("Adhar Card",true);
 Checkbox cb2=new Checkbox("Pan Card");
 public void init()

 {
 add(cb1);
 add(cb2);

 }
}

Output

 1.8 Multiple Choice Questions

Q.1 On which side applet always executed ?

 a Server side

 b Client side

Q.2 Which method of the Applet class displays the result of applet code on screen ?

 a run() method b paint() method

 c drawString() method d main() method

Q.3 Applet can be embedded in _________.

 a HTML document b word document

 c gif file d rtf file

Advanced JAVA Programming 1 - 21 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.4 Which of the following is true about applet ?

 a Applets do not have main() method.

 b Applets must run under appletviewer or web browser.

 c The user I/O is not performed using Java's stream I/O class.

 d All of these.

Q.5 Executable applet is _________.

 a .applet file b .java html

 c .java file d .class file

Q.6 Which object can be constructed to show any number of choices in the visible window ?

 a Labels b Choice

 c List d Checkbox

Q.7 The drawString method of defined in ________.

 a java.awt b java.applet

 c java.io d java.util

Q.8 Which class provides many methods for graphics programming ?

 a java.awt b java.Graphics

 c java.awt.Graphics d None of these

Q.9 When we invoke repaint() for a java.awt.Component object, the AWT invokes the

method :

 a draw() b update()

 c show() d paint()

Q.10 Which method executes only once ?

 a start() b stop()

 c init() d destroy()

Q.11 What does the following line of code do ?

Textfield text = new Textfield(20);

 a Creates text object that can hold 20 rows of text.

 b Creates text object that can hold 20 columns of text.

 c Creates the object text and initializes it with the value 20.

 d This is invalid code

Advanced JAVA Programming 1 - 22 Applet

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Answer Keys for Multiple Choice Questions :

Q.1 b Q.2 b Q.3 a

Q.4 d Q.5 d Q.6 c

Q.7 a Q.8 c Q.9 b

Q.10 c Q.11 b

(2 - 1)

UNIT II

2 Event Handling using
AWT / Swing Components

Syllabus
Event Handling : Events, Event sources, Event classes, Event Listeners, Delegation event model,
handling mouse and keyboard events, Adapter classes, inner classes. The AWT class hierarchy, user
interface components - labels, button, canvas, scrollbars, text components, checkbox, checkbox
groups, choices, lists panels - scroll pane, dialogs, menu bar, graphics, layout manager - layout
manager types - boarder, grid, flow, card and grib bag.

Contents

2.1 Events

2.2 Event Sources

2.3 Event Classes

2.4 Event Listeners

2.5 Delegation Event Model

2.6 Handling Mouse Events

2.7 Handling Keyboard Events

2.8 Adapter Classes

2.9 Inner Classes

2.10 What is Abstract Windowing Toolkit ?

2.11 The AWT Class Hierarchy

2.12 Limitations of AWT

2.13 User Interface Components

2.14 Dialogs

2.15 Menu bar

2.16 Programming Examples based on AWT Components and Event Handling

2.17 Graphics

2.18 Layout Manager

2.19 Multiple Choice Questions

Advanced JAVA Programming 2 - 2 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Part I : Event Handling

 2.1 Events

Event is a changing state of an object. For example - The user clicks the mouse button
or user presses the key on the keyboard.

 2.2 Event Sources

 An event source is the object that generates the event. For example if you click a
button an ActionEvent object is generated.

 The object of the ActionEvent class has all corresponding information about this
event. Here button is an event source.

 Various event sources can be button, checkbox, textbox, scrollbars and so on.

 2.3 Event Classes

 Event classes are the classes responsible for handling events in the event handling
mechanism.

 The EventObject class is at the top of the event class hierarchy. It belongs to the
java.util package. And other event classes are present in java.awt.event package.

 The getSource() and toString() are the methods of the EventObject class.

 There is getId() method belonging to java.awt.event package returns the nature of
the event.

 For example, if a keyboard event occurs, you can find out whether the event was
key press or key release from the event object.

 Various event classes that are defined in java.awt.event class are -
1. An ActionEvent object is generated when a component is activated. For example

if a button is pressed or a menu item is selected then this event occurs.
2. An AdjustmentEvent object is generated when scrollbars are used.
3. A TextEvent object is generated when text of a component or a text field is

changed.
4. A ContainerEvent object is generated when component are added or removed

from container.
5. A ComponentEvent object is generated when a component is resized, moved,

hidden or made visible.
6. An ItemEvent is generated when an item from a list is selected. For example a

choice is made or if checkbox is selected.

Advanced JAVA Programming 2 - 3 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

7. A FocusEvent object is generated when component receives keyboard focus for
input.

8. A KeyEvent object is generated when key on keyboard is pressed or released.

9. A WindowEvent object is generated when a window activated, maximized or
minimized.

10. A MouseEvent object is generated when a mouse is clicked, moved, dragged,
released.

 2.3.1 ActionEvent Class

Description When an event gets generated due to pressing of button, or by selecting menu item
or by selecting an item, this event occurs.

Constructors ActionEvent(Object source, int id, string command, long when, int modifier)
The source indicates the object due to which the event is generated.
The id which is used to identify the type of event.
The command is a string that specifies the command that is associated with the
event.
The when denotes the time of event.
The modifier indicates the modifier keys such as ALT, CNTRL, SHIFT that are
pressed when an event occurs.

Methods String getActionCommand() : This method is useful for obtaining the command
string which is specified during the generation of event.

 int getModifiers() : This method returns the value which indicates the type of
key being pressed at the time of event.

 long getWhen() : It returns the time at which the event occurs.

Constants There are four constants that are used to indicate the modifier keys being pressed.
These constants are CTRL_MASK, SHIFT_MASK, META_MASK and ALT_MASK.

 2.3.2 ItemEvent Class

Description This event gets caused when an item is selected or deselected.

Constructors ItemEvent(ItemSelectable, int, Object, int)
Constructs a ItemSelectEvent object with the specified ItemSelectable source, type,
item and item select state.

Methods 1) getItem() : It returns the item where the event occurred.
2) getItemSelectable() : Returns the ItemSelectable object where this event

originated.
3) getStateChange() : Returns the state change type which generated the event.

Constants 1) ITEM_FIRST : Marks the first integer id for the range of item
2) ITEM_LAST : Marks the last integer id for the range of item

Advanced JAVA Programming 2 - 4 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

3) ITEM_STATE_CHANGED : The item state changed event type
4) SELECTED : The item selected state change type
5) DESELECTED : The item de-selected state change type

 2.3.3 KeyEvent Class

Description This event is generated when key on the keyboard is pressed or released.

Constructors KeyEvent(Component source, int type, long t, int modifiers, int code)
The source is a reference to the component that generates the event.
The type specifies the type of event.
The t denotes the system time at which the event occurs.
The modifiers represent the modifier keys such as ALT, CNTRL, SHIFT that are
pressed when an event occurs.
The code represents the virtual keycode such as VK_UP, VK_ESCAPE and so on.

Methods char getKeyChar() : It returns the character when a key is pressed.

Constants KEY_PRESSED : This event is generated when the key is pressed.
 KEY_RELEASED : This event is generated when the key is released.
 KEY_TYPED : This event is generated when the key is typed.

 2.3.4 MouseEvent Class

Description This event occurs when mouse action occurs in a component. It reacts for both
mouse event and mouse motion event.

 Mouse Events
o A mouse button is pressed
o A mouse button is released
o A mouse button is clicked (pressed and released)
o The mouse cursor enters a component
o The mouse cursor exits a component

 Mouse Motion Events
o The mouse is moved
o The mouse is dragged

Methods 1) int getButton() : It returns which of the mouse button has changed the state.
2) int getClickCount() : It returns number of mouse clicks.
3) Point getLocationOnScreen() : Returns the absolute x, y position at that event.
4) Point getPoint() : Returns the x,y position of the event relative to the source
 component.
5) int getX() : Returns the horizontal x position of the event relative to the source
 component.
6) int getY() : Returns the vertical y position of the event relative to the source
 component.

Advanced JAVA Programming 2 - 5 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fields Following are the fields for java.awt.event.MouseEvent class :
 static int BUTTON1 --Indicates mouse button #1; used by getButton()
 static int BUTTON2 --Indicates mouse button #2; used by getButton()
 static int BUTTON3 --Indicates mouse button #3; used by getButton()
 static int MOUSE_CLICKED --The "mouse clicked" event
 static int MOUSE_DRAGGED --The "mouse dragged" event
 static int MOUSE_ENTERED --The "mouse entered" event
 static int MOUSE_EXITED --The "mouse exited" event
 static int MOUSE_FIRST --The first number in the range of ids used for mouse

events
 static int MOUSE_LAST -- The last number in the range of ids used for mouse

events
 static int MOUSE_MOVED --The "mouse moved" event
 static int MOUSE_PRESSED -- The "mouse pressed" event
 static int MOUSE_RELEASED --The "mouse released" event
 static int MOUSE_WHEEL --The "mouse wheel" event
 static int NOBUTTON --Indicates no mouse buttons; used by getButton()

static int VK_WINDOWS --Constant for the Microsoft Windows "Windows" key.

 2.3.5 TextEvent Class

Description This event indicates that object's text is changed.

Constructor TextEvent(Object source, int id)

It constructs a TextEvent object.

Methods String paramString() : Returns a parameter string identifying this text event.

Fields TEXT_FIRST : The first number in the range of ids used for text events.
 TEXT_LAST : The last number in the range of ids used for text events.
 TEXT_VALUE_CHANGED : This event id indicates that object's text

changed.

 2.3.6 WindowEvent Class

Description This is an event that indicates that a window has changed its status.

Constructor WindowEvent(Window source, int id) : Constructs a WindowEvent object.

WindowEvent(Window source, int id, int oldState, int newState) : Constructs a
WindowEvent object with the specified previous and new window states.

Methods 1) int getNewState() : It returns the new state of the window.

2) int getOldState() : It returns the previous state of the window.

3) Window getOppositeWindow() : Returns the other Window involved in this

 focus or activation change.

4) Window getWindow() : Returns the originator of the event.

Advanced JAVA Programming 2 - 6 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fields WINDOW_ACTIVATED : The window-activated event type.

 WINDOW_CLOSED : The window closed event.

 WINDOW_DEACTIVATED : The window-deactivated event type.

 WINDOW_FIRST : The first number in the range of ids used for window
events.

 WINDOW_LAST : The last number in the range of ids used for window
events.

 WINDOW_OPENED : The window opened event.

 WINDOW_STATE_CHANGED : The window-state-changed event type.

 2.4 Event Listeners

 The task of handling an event is carried out by event listener.
 When an event occurs, first of all an event object of the appropriate type is created.

This object is then passed to a Listener.
 A listener must implement the interface that has the method for event handling.
 The java.awt.event package contains definitions of all event classes and listener

interface.
 An Interface contains constant values and method declaration.
 The methods in an interface are only declared and not implemented, i.e. the

methods do not have a body.
 The interfaces are used to define behavior on occurrence of event that can be

implemented by any class anywhere in the class hierarchy.

 2.4.1 ActionListener Interface

 This interface defines the method actionPerformed() which is invoked when an
ActionEvent occurs.

 The syntax of this method is
 void actionPerformed(ActionEvent act)

where act is an object of ActionEvent class.

 2.4.2 ItemListener Interface

 This interface is used when an item from a list is selected. For example a choice is
made or if checkbox is selected.

 The itemStateChanged() is the only method defined by the ItemListener interface.

 The syntax is
 void itemStateChanged(ItemEvent It)

Advanced JAVA Programming 2 - 7 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.4.3 KeyListener Interface

 This interface is defining the events such as keyPressed(), keyReleased() and
keyTyped() are used.

 These methods are useful for key press, key release and when you type some
characters.

 void keyPressed(keyEvent k)
 void keyReleased(keyEvent k)
 void keyTyped(keyEvent k)

 2.4.4 MouseListener Interface

 This interface defines five important methods for various activities such as mouse
click, press, released, entered or exited. These are

 void mouseClicked(MouseEvent m)
 void mousePressed(MouseEvent m)
 void mouseReleased(MouseEvent m)
 void mouseEntered(MouseEvent m)
 void mouseExited(MouseEvent m)

 2.4.5 MouseMotion Interface

 For handling mouse drag and mouse move events the required methods are defined
by MouseMotionListener interface. These methods are

 void mouseDragged(MouseEvent m)
 void mouseMoved(MouseEvent m)

 2.4.6 TextListener Interface

 An event of type TextEvent is generated when a value in textfield or textarea is
entered or edited.

 The methods used by TextListener Interface are
 public String paramString():
 public void textValueChanged(TextEvent e):

 2.4.7 WindowListener Interface

 There are seven methods in which are related to windows activation and
deactivation.

 void windowOpened(WindowEvent w)
 void windowClosed(WindowEvent w)
 void windowClosing(WindowEvent w)
 void windowActivated(WindowEvent w)
 void windowDeactivated(WindowEvent w)

Advanced JAVA Programming 2 - 8 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 void windowIconified(WindowEvent w)
 void windowDeiconified(WindowEvent w)

 2.5 Delegation Event Model

 Basic Concept : Event delegation model is used for understanding the event and
for processing it. The event-handler method takes the Event object as a parameter.
For handling particular event specific object of event must be mentioned.

 There are four main components based on this model are

Fig. 2.5.1 Components of event delegation model

Advantages of Event Delegation Model

Following are the advantages of event delegation model -
1. In event delegation model the events are handled using objects. This allows a

clear separation between the usage of the components and the design.
2. It accelerates the performance of the application in which multiple events are

used.

 Let us see how an event gets handled with the help of programming example.

 Example : Handling Button Click

 The buttons are sometimes called as push buttons. We can associate some event on
button click. That means on clicking the button, certain event gets triggered to
perform required task. Following example illustrates this idea.

 Example 2.5.1 Write a Java program to toggle the background color on every click of button.

Solution :

Java Program[Button1.java]

//This program alternatively changes the background color
//After every click of button
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="Button1" width=350 height=200>

Advanced JAVA Programming 2 - 9 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

</applet>
*/
public class Button1 extends Applet

implements ActionListener
{

 Button button=new Button("change the color");
 boolean flag=true;
 public void init()
 {
 add(button);
 button.addActionListener(this);
 }
 public void paint(Graphics g)
 {
 if(flag)
 setBackground(Color.yellow);

 else

 setBackground(Color.red);
 }
 public void actionPerformed(ActionEvent e)
 {
 String str=e.getActionCommand();
 if(str.equals("change the color"))
 {
 flag=!flag;
 //toggle the flag values on every click of button
 repaint();
 }
 }
}

Output

D:\>Appletviewer Button1.java

Event Listner Interface

Placing the button control

Invoking the button click Event

ActionListner Interface defines

action performed method. Using this

method event is handled

Event gets handled here

Advanced JAVA Programming 2 - 10 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Program Explanation

In above program,

1) When a button is clicked the action of changing the background color occurs.
Hence this program must implement the ActionListener interface.

2) This listener class must have a method called actionPerformed which has a
parameter an object-ActionEvent.

3) By invoking the method getActionCommand we can recognise that the event
has occurred by clicking the button.

 2.6 Handling Mouse Events

 In order to handle any event, we need to use Listener interfaces. For handling the
mouse events the MouseListener and MouseMotionListener interfaces are used.

Methods of MouseListener interface

 There are 5 abstract methods used under MouseListener interface and those are -

1. public abstract void mouseClicked(MouseEvent e);

2. public abstract void mouseEntered(MouseEvent e);

3. public abstract void mouseExited(MouseEvent e);

4. public abstract void mousePressed(MouseEvent e);

5. public abstract void mouseReleased(MouseEvent e);

Methods of MouseMotionListener interface

 There are 2 abstract methods used under MouseMotionListener interface and those
are -

1. public abstract void mouseDragged(MouseEvent e);

2. public abstract void mouseMoved(MouseEvent e);

Example Program

Java Program[MouseEventDemo.java]

/*
This is a Java program which is for handing mouse events
*/
import java.awt.*;
import java.applet.*;
import java.awt.event.*;
/*
<applet code="MouseEventDemo" width=300 height=200>

Advanced JAVA Programming 2 - 11 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

</applet>
*/
public class MouseEventDemo extends Applet
implements MouseListener,MouseMotionListener
{
 String msg="";
 int xposition=0,yposition=0;
 public void init()
 {
 addMouseListener(this);
 addMouseMotionListener(this);
}
public void mouseClicked(MouseEvent m)
{
 xposition=m.getX();
 yposition=m.getY();
 msg="mouse Clicked";
 repaint();
}
public void mousePressed(MouseEvent m)
{
 xposition=m.getX();
 yposition=m.getY();
 msg="Pressing mouse button";
 repaint();
}
public void mouseReleased(MouseEvent m)
{
 xposition=m.getX();
 yposition=m.getY();
 msg="Releasing mouse button";
 repaint();
}
public void mouseEntered(MouseEvent m)
{
 xposition=0;
 yposition=190;
 msg="mouse Entered";
 repaint();
}

public void mouseExited(MouseEvent m)
{
 xposition=0;

Advanced JAVA Programming 2 - 12 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 yposition=190;
 msg="mouse Exited";
 repaint();
}
public void mouseDragged(MouseEvent m)
{
 xposition=m.getX();
 yposition=m.getY();
 msg="Dragging mouse at "+xposition+","+yposition;
 repaint();
}
public void mouseMoved(MouseEvent m)
{
 xposition=m.getX();
 yposition=m.getY();
 msg="Moving mouse at "+xposition+","+yposition;
 repaint();
}
public void paint(Graphics g)
{
 g.drawString(msg,xposition,yposition);
}
}

Output

Program Explanation

In above program, we have used
 import java.awt.event.*;

because various commonly used events are defined in the package java.awt.event.

Advanced JAVA Programming 2 - 13 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 The applet has to register itself as a listener to various events (here the same applet
acts as a event source as well as event listener). Hence inside init() method applet
registers itself as a listener by following statements

 addMouseListener(this);
 addMouseMotionListener(this);

 And then simple methods of mouse events are defined. The getX() and getY()
methods return the current x and y positional values. To each of these methods an
object of MouseEvent is passed which is shown by a variable 'm'.

 Example 2.6.1 What method is used to distinguish between single, double and triple mouse
clicks ? Illustrate.

Solution : public int getClickCount() : This method returns the number of mouse clicks.
Hence we can check -
 if (mouseEvent.getClickCount() == 1)
 {
 System.out.println("Single Click");
}
else if (mouseEvent.getClickCount() == 2)
 {
 System.out.println("Double Click");
}
else if (mouseEvent.getClickCount() == 3)
 {
 System.out.println("Triple Click");
}

 2.7 Handling Keyboard Events

 When key from a keyboard is pressed then it causes an event.

 There are three commonly used methods from KeyListener interface and those are

1. keyPressed(),

2. keyReleased() and

3. keyTyped().

 The use of these methods is shown by following Java program -
Java Program [KeyboardDemo.java]
import java.awt.*;
import java.applet.*;
import java.awt.event.*;
/*
<applet code="KeyboardDemo" width=500 height=300>

Advanced JAVA Programming 2 - 14 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

</applet>
*/
public class KeyboardDemo extends Applet
implements KeyListener
{
 String msg="";
 public void init()
 {
 addKeyListener(this);
 requestFocus();
 }
 public void keyPressed(KeyEvent k)
 {
 showStatus("Key Pressed");
 }
 public void keyReleased(KeyEvent k)
 {
 showStatus("Key Released");
 }
 public void keyTyped(KeyEvent k)
 {
 Font f;
 f=new Font("Monotype Corsiva",Font.BOLD,30);
 msg+=k.getKeyChar();
 setFont(f);
 repaint();
}
 public void paint(Graphics g)
 {
 g.drawString(msg,30,70);
 }
}

Output

Advanced JAVA Programming 2 - 15 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Program Explanation : In above program, we have used -

1) The keyPressed() event is for handling the event of pressing a key, similarly
keyReleased() event is for handling the event of release of key.

2) Using keyTyped() method we can display the character typed on the screen. The
only needed method for this is getKeyChar() which returns the currently typed
character.

3) Last but not the least, all these methods require one important method that has
to be invoked in init() function and that is requestFocus(). This method has to be
invoked to gain the focus in the init method and whenever you want to
implement keyListener interface.

 2.8 Adapter Classes

 It is basically a class in Java that implements an interface with a set of dummy
methods.

 The famous adapter classes in Java API are WindowAdapter, ComponentAdapter,
ContainerAdapter, FocusAdapter, KeyAdapter, MouseAdapter and
MouseMotionAdapter.

 Whenever your class implements such interface, you have to implements all of the
seven methods.

 WindowAdapter class implements WindowListener interface and make seven
empty implementation.

 When you class subclass WindowAdapter class, you may choose the method you
want without restrictions.

 The following give such an example.
public interface Windowlistener {
 public void windowClosed(WindowEvent e);
 public void windowOpened(WindowEvent e);
 public void windowIconified(WindowEvent e);
 public void windowDeiconified(WindowEvent e);
 public void windowActivated(WindowEvent e);
 public void windowDeactivated(WindowEvent e);
 public void windowClosing(WindowEvent e);
}
public class WindowAdapter implements WindowListner{
 public void windowClosed(WindowEvent e){}
 public void windowOpened(WindowEvent e){}
 public void windowIconified(WindowEvent e){}
 public void windowDeiconified(WindowEvent e){}

Advanced JAVA Programming 2 - 16 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 public void windowActivated(WindowEvent e){}
 public void windowDeactivated(WindowEvent e){}
 public void windowClosing(WindowEvent e){}
}

 You can add adapter class as subclass and override just the methods you need.

 Here is a simple Java program for handling mouse events.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="Test" width=300 height=200>
</applet>
*/
public class Test extends Applet
{
 public void init()
 {
 //defining the adapter classes
 //adapter1 is for MouseListener
 //adapter2 is for MouseMotionListener

 addMouseListener(new adapter1(this));
 addMouseMotionListener(new adapter2(this));
}
}
class adapter1 extends MouseAdapter
{
 //object of main Test class
 Test obj;
 public adapter1(Test obj)
 {
 this.obj=obj;
 }
//method belonging to MouseListener interface
 public void mouseClicked(MouseEvent m)
 {
 obj.showStatus("Mouse clicked");
 }
}
class adapter2 extends MouseMotionAdapter
{
 Test obj;
 public adapter2(Test obj)
 {

Advanced JAVA Programming 2 - 17 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 this.obj=obj;
 }
 //method belonging to MouseMotionListener interface
 public void mouseMoved(MouseEvent m)
 {
 obj.showStatus("Mouse Moved");
 }
}

Output

Program Explanation :

1) In this program we have used two interfaces MouseListener and
MouseMotionListener.

2) Two adapter classes are created. The adapter1 class is for MouseListener
interface and the adapter2 class is for MouseMotionListener interface.

3) Note that, in the class Test we have written init method in which two adapter
classes are created and registered as Listener using following statements

 addMouseListener(new adapter1(this));
 addMouseMotionListener(new adapter2(this));

4) Then we have defined adapter1 class in which object for adapter class adapter1
is initialised. Note that we have written mouseClicked method in adapter1 class
because mouseClicked method is belonging to the MouseListener interface and
the adapter class adapter1 is for MouseListener.

5) Same is true for the adapter2 class which is an adapter class for
MouseMotionListener. Note that in the definition of adapter2 class
mouseMoved method is written because mouseMoved method is belonging to
the MouseMotionListener.

6) On running the above code, appropriate status will be shown on applet on
encountering particular mouse event (either mouse click or mouse move).

Advanced JAVA Programming 2 - 18 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Review Question

1. What are the various adapter classes that implements commonly used Listener interfaces ?
Write a sample Java program to demonstrate an Adapter.

 2.9 Inner Classes

Definition : Inner classes are the nested classes. That means these are the classes that
are defined inside the other classes.

The syntax of defining the inner class is -
Access_modifier class OuterClass
{
 //code
 Access_modifier class InnerClass
 {
 //code
 }
}

Properties of inner classes

Following are some properties of inner class -

 The outer class can inherit as many number of inner class objects as it wants.

 If the outer class and the corresponding inner class both are public then any other
class can create an instance of this inner class.

 The inner class objects do not get instantiated with an outer class object.

 The outer class can call the private methods of inner class.

 Inner class code has free access to all elements of the outer class object that contains
it.

 If the inner class has a variable with same name then the outer class’s variable can
be accessed like this -

 outerclassname.this.variable_name

There are four types of inner classes -

 2.9.1 Static Member Classes

 This inner class is defined as the static member variable of another class.

 Static members of the outer class are visible to the static inner class.

 The non-static members of the outer class are not available to inner class.

Advanced JAVA Programming 2 - 19 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Syntax

Access_modifier class OuterClass
{
 //code
 public static class InnerClass
 {
 //code
 }
 }

 2.9.2 Member Classes

This type of inner class is non-static member of outer class.
Syntax
Access_modifier class outerclass
{
 //code
 Access_modifier class interclass
 {
 //code
 }
}

Example

class A
{
 private String name="Ankita";

 class B
 {

 void display()
 {
 System.out.println("Name is: "+name);
 }
 }
 public static void main(String args[])
 {
 A obj=new A();
 A.B in_obj=obj.new B();
 in_obj.display();
 }
}

Output

Name is : Ankita

Inner Member class

Advanced JAVA Programming 2 - 20 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.9.3 Local Classes

 This class is defined within a Java code just like a local variable.
 Local classes are never declared with an access specifier.
 The scope inner classes is always restricted to the block in which they are declared.
 The local classes are completely hidden from the outside world.

Syntax

Access_modifier class OuterClass
{
 //code
 Access_modifier return_type methodname(arguments)
 {
 class InnerClass
 {
 //code
 }
 //code
}

Example

public class A
{
 private String name="Ankita";//instance variable
 void display()
 {
 class Local
 {

 void show()
 {
 System.out.println("From Local class: "+name);
 }
 }
 Local obj=new Local();
 obj.show();
 }
 public static void main(String args[])
 {
 A a=new A();
 a.display();
 }
}

Output

From Local class: Ankita

Local Inner Class

Advanced JAVA Programming 2 - 21 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.9.4 Anonymous Classes

 Anonymous class is a local class without any name.

 Anonymous class is a one-shot class- created exactly where needed.

 The anonymous class is created in following situations -

o When the class has very short body.

o Only one instance of the class is needed.

o Class is used immediately after defining it.

 The anonymous inner class can extend the class, it can implement the interface or it
can be declared in method argument.

Programming Example

class MyInnerClass implements Runnable
{
 public void run()
 {
 System.out.println(“Hello”);
 }
class DemoClass
{
 public static void main(String[] arg)
{
 MyInnerClass my=new MyInnerClass();
Thread th=new Thread(my);
my.start();
}
}
}

Review Question

1. What is inner classes ? Explain its types.

Part II : AWT

 2.10 What is Abstract Windowing Toolkit ?

 The AWT stands for Abstract Window Toolkit.

 The AWT package contains large number of classes which help to include various
graphical components in the Java Program.

 The graphical components include text box, buttons, labels, radio buttons and so on.

Advanced JAVA Programming 2 - 22 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.11 The AWT Class Hierarchy

 The AWT classes are arranged in hierarchical manner which is known as AWT
Hierarchy. Refer Fig. 2.11.1.

Fig. 2.11.1 AWT hierarchy

 The hierarchy components classes are -
o Component : This is the super class of all the graphical classes from which

variety of graphical classes can be derived. It helps in displaying the graphical
object on the screen. It handles the mouse and keyboard events.

o Container : This is a graphical component derived from the component class. It
is responsible for managing the layout and placement of graphical components
in the container.

o Window : The top level window without border and without the menu bar is
created using the window class. It decides the layout of the window.

o Panel : The panel class is derived from the container class. It is just similar to
window - without any border and without any menu bar, title bar.

o Frame : This is a top-level window with a border and menu bar. It supports the
common window events such as window open, close, activate and deactivate.

Review Question

1. Explain AWT hierarchy in detail

 2.12 Limitations of AWT

Following are some limitations of AWT

1. The AWT components are heavyweight in nature.

2. It does not support some advanced components such as trees, tables and so on.

3. It is platform dependable.

4. The buttons of AWT does not support pictures.

Advanced JAVA Programming 2 - 23 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.13 User Interface Components

 There are various graphical components that can be placed on the frame. These
components have the classes. These classes have the corresponding methods.

 When we place the components on the frame we need to set the layout of the frame.

 The commonly used layout is FlowLayout. The FlowLayout means the components
in the frame will be placed from left to right in the same manner as they get added.

 Various components that can be placed for designing user interface are -

1. Label 2. Buttons 3. Canvas 4. Scroll bars

5. Text Components 6. Checkbox 7. Choices 8. Lists Panels

9. Dialogs 10. Menubar

 Let us discuss these components one by one, but before that let us understand how
to create a frame on which we can place the components.

 2.13.1 Labels

 The syntax of this control is
 Label (String s)
 Label(String s, int style)

 where the s of String type represent the string contained by the label similarly in the
other label function style is a constant used for the style of label. It can be Label.
LEFT, Label.RIGHT and Label.CENTER. Here is a JAVA program which makes use
Label.

 Example 2.13.1 Write a simple Java program to demonstrate the use of label components.

Solution :

Java Program[Use_Label.java]

 import java.awt.*;
 class Use_Label
 {
 public static void main(String[] args)
 {
 Frame fr=new Frame("This Program is for Displaying the Label");
 fr.setSize(400,200);
 fr.setLayout(new FlowLayout());
 fr.setVisible(true);
 Label L1=new Label("OK");
 Label L2=new Label("CANCEL");
 fr.add(L1);
 fr.add(L2);

Advanced JAVA Programming 2 - 24 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 }
 }

Output

 C:\>javac Use_label.java
 C:\>java Use_label

 2.13.2 Buttons

 Buttons are sometimes called as push buttons. This component contains a label and
when it is pressed it generates an event.

 The syntax of this control is
 Button (String s)

Java Program

 import java.awt.*;
 class Use_Button
 {
 public static void main(String[] args)
 {
 Frame fr=new Frame("This Program is for Displaying the Button");
 fr.setSize(400,200);
 fr.setLayout(new FlowLayout());
 fr.setVisible(true);
 Button B1=new Button("OK");
 Button B2=new Button("CANCEL");
 fr.add(B1);
 fr.add(B2);
 }
 }

Output

Advanced JAVA Programming 2 - 25 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 We can create an array of buttons. Following is a simple Java program which
illustrates this ideas -

Java Program[Use_Button_Arr.java]

 import java.awt.*;

 class Use_Button_Arr

 {

 public static void main(String[] args)

 {

 int i;

 Frame fr=new Frame("This Program is for Displaying the Buttons");

 fr.setSize(400,200);

 fr.setLayout(new FlowLayout());

 fr.setVisible(true);

 Button buttons[]=new Button[5];

 String Fruits[]={"Mango","Orange","Banana","Apple","Strawberry"};

 for(i=0;i<5;i++)

 {

 buttons[i]=new Button(" "+Fruits[i]);

 fr.add(buttons[i]);

 }

 }

 }

Output

 2.13.3 Canvas

 Canvas is a special area created on the frame.

 The canvas is specially used for drawing the graphical components such as oval,
rectangle, line and so on.

Advanced JAVA Programming 2 - 26 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Various methods of this class are

Method Description

void setSize(int width, int height) This method sets the size of the canvas for given width and
height.

void setBackground(Color c) This method sets the background color of the canvas.

void setForeground(Color c) This method sets the color of the text.

 Following is a simple Java program which shows the use of canvas -

Java Program[Use_Canvas.java]

 import java.awt.*;
 class Use_Canvas
 {
 public static void main(String[] args)
 {
 Frame Fr = new Frame("This program has a canvas");
 Canvas C1 = new Canvas();
 C1.setSize(120,120);
 C1.setBackground(Color.blue);
 Fr.setLayout(new FlowLayout());
 Fr.setSize(250,250);
 Fr.setVisible(true);
 Fr.add(C1);
 }
 }

Output

C:\>javac Use_Canvas.java
C:\>java Use_Canvas

Advanced JAVA Programming 2 - 27 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.13.4 Scrollbars

 Scrollbar can be represented by the slider widgets.

 There are two styles of scroll bars - Horizontal scroll bar and vertical scroll bar.

 Following program shows the use of this component.

Java Program

 import java.awt.*;
 class Use_ScrollBars
 {
 public static void main(String[] args)
 {

 Frame Fr = new Frame("This program has a scrollbars");
 Scrollbar HSelector = new Scrollbar(Scrollbar.HORIZONTAL);
 Scrollbar VSelector = new Scrollbar(Scrollbar.VERTICAL);

 Fr.setLayout(new FlowLayout());
 Fr.setSize(300,300);
 Fr.setVisible(true);
 Fr.add(HSelector);
 Fr.add(VSelector);
 }
 }

Output

Advanced JAVA Programming 2 - 28 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.13.5 Text Components

 In Java there are two controls used for text box - One is TextField and the other one
is TextArea.

 The TextField is a slot in which one line text can be entered. In the TextField we can
enter the string, modify it, copy, cut or paste it. The syntax for the text field is

 int TextField(int n)

where n is total number of characters in the string.

 The TextArea control is used to handle multi-line text. The syntax is -
 TextArea(int n,int m)

where n is for number of lines and m is for number of characters.

Following is a Java program which illustrates the use of TextField and TextArea.

Java Program[Use_TxtFld.java]

 import java.awt.*;

 class Use_TxtFld

 {

 public static void main(String[] args)

 {

 int i;

 Frame fr=new Frame("This Program is for Displaying the TextField");

 fr.setSize(350,300);

 fr.setLayout(new FlowLayout());

 fr.setVisible(true);

 Label L1=new Label("Enter your name here");

 TextField input1=new TextField(10);

 Label L2=new Label("Enter your address here");

 TextArea input2=new TextArea(10,20);

 fr.add(L1);

 fr.add(input1);

 fr.add(L2);

 fr.add(input2);

 }

 }

Advanced JAVA Programming 2 - 29 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

 2.13.6 Checkbox

 Checkbox is basically a small box which can be ticked or not ticked.

 In Java we can select particular item using checkbox control.

 This control appears as small box along with label. The label tells us the name of the
item to be selected.

 The syntax of checkbox is as given below -
 Checkbox(String label)

where label denotes the label associated with each checkbox.

 To get the state of the checkbox the getState() method can be used.

Java Program[Use_ChkBox.java]

 import java.awt.*;
 class Use_ChkBox
 {
 public static void main(String[] args)
 {
 int i;
 Frame fr=new Frame("This Program is for Displaying the Checkbox");
 fr.setSize(350,300);
 fr.setLayout(new FlowLayout());
 fr.setVisible(true);
 Checkbox box1=new Checkbox("Candy");

Advanced JAVA Programming 2 - 30 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Checkbox box2=new Checkbox("Ice-cream");
 Checkbox box3=new Checkbox("Juice");
 fr.add(box1);
 fr.add(box2);
 fr.add(box3);
 }
}

Output

 2.13.7 Checkbox Group

 The Checkbox Group component allows the user to make one and only one
selection at a time.

 These checkbox groups is also called as radio buttons. The syntax for using
checkbox groups is -

 Checkbox(String str ,CheckboxGroup cbg , Boolean val);

 Following is a simple Java program which makes use of this control.

Java Program[Use_CheckBoxGr.java]

 import java.awt.*;
 class Use_CheckBoxGr
 {
 public static void main(String[] args)
 {

 Frame Fr = new Frame("This program uses checkbox groups");
 Fr.setLayout(new FlowLayout());
 Fr.setSize(300,300);
 Fr.setVisible(true);

Advanced JAVA Programming 2 - 31 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 CheckboxGroup cbg=new CheckboxGroup();
 Checkbox box1=new Checkbox("Candy",cbg,true);
 Checkbox box2=new Checkbox("Ice-cream",cbg,false);
 Checkbox box3=new Checkbox("Juice",cbg,false);
 Fr.add(box1);
 Fr.add(box2);
 Fr.add(box3);
 }
 }

Output

 2.13.8 Choices

 This is a simple control which allows the popup list for selection.

 We have to create an object of type choice as follows -
 Choice obj=new Choice();

Java Program[Use_Choice.java]

 import java.awt.*;
 class Use_Choice
 {
 public static void main(String[] args)
 {
 int i;
 Frame fr=new Frame("This Program is for Displaying the Choice list");
 fr.setSize(350,300);
 fr.setLayout(new FlowLayout());
 fr.setVisible(true);
 Choice c1=new Choice();
 Choice c2=new Choice();
 c1.add("Mango");

Advanced JAVA Programming 2 - 32 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 c1.add("Apple");
 c1.add("Strawberry");
 c1.add("Banana");

 c2.add("Rose");
 c2.add("Lily");
 c2.add("Lotus");
 fr.add(c1);
 fr.add(c2);

 }
 }

Output

 2.13.9 List Panels

 List is a collection of many items.

 By double clicking the desired item we can select it. Following Java program makes
use of this control -

Java Program[Use_List.java]

import java.awt.*;
class Use_List
{

Advanced JAVA Programming 2 - 33 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 public static void main(String[] args)
 {
 int i;
 Frame fr=new Frame("This Program is for Displaying the List");
 fr.setSize(350,300);
 fr.setLayout(new FlowLayout());
 fr.setVisible(true);
 List flower=new List(4,false);
 flower.add("Rose");
 flower.add("Jasmine");
 flower.add("Lotus");
 flower.add("Lily");
 fr.add(flower);
 }
}

Output

 2.14 Dialogs

 Dialog control represents a top-level window with a title and a border used to take
some form of input from the user.

 The dialog boxes does not have maximize and minimize buttons.

Advanced JAVA Programming 2 - 34 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Constructor for using Dialog Box

Constructor Description

Dialog(Dialog owner) Creates modeless dialog window with a frame owner.

Dialog(Dialog owner, String title) Creates modeless dialog window with a frame owner

and string title.

Dialog(Dialog owner, String title, boolean

modal)

Creates modeless dialog window with a frame

owner,string title and modaltity to be true or false i.e. if

the dialogbox is modal or modeless

What is modal and modeless Dialog Window ?

Modal Dialog Box

 A Modal dialog box is one that the user must first close in order to have access to
any other framed window or dialog box of the same application.

Modeless Dialog Box

 A dialog box is referred to as modeless if the user does not have to close it in order
to continue using the application that owns the dialog box.

Java Program[DialogBoxProg.java]

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

class DialogBoxProg extends Frame

{

 public static void main(String[] args)

 {

 Dialog d;

 Frame frame = new Frame();

 d=new Dialog(frame,"Dialog Box Demo",true);

 d.add(new Label ("This is a simple dialog box."));

 d.setSize(300,300);

 d.setVisible(true);

 frame.setSize(330,250);

 frame.setVisible(true);

 }

}

Advanced JAVA Programming 2 - 35 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

output

 2.14.1 File Dialog

 The FileDialog class displays a dialog window from which the user can select a file.

 Since it is a modal dialog, when the application calls its show method to display the

dialog, it blocks the rest of the application until the user has chosen a file.

 Signature for File Dialogbox is
 public class FileDialog extends Dialog

Methods used by FileDialog

Name Purpose

getDirectory() gets the directory of file dialog

getFile() gets selected file of file dialog

getMode() indicates whether file dialog box is for loading from a file or saving to a file.

setDirectory(String) Sets the directory of this file dialog window to be the specified directory.

setFile(String) Sets the selected file for this file dialog window to be the specified file.

setMode(int) Sets the mode of the file dialog

Advanced JAVA Programming 2 - 36 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Variables used by FileDialog

Name Purpose

LOAD This constant value indicates that the purpose of the file dialog window is to locate a

file from which to read.

SAVE This constant value indicates that the purpose of the file dialog window is to locate a

file to which to write.

Syntax

 public FileDialog(Frame parent, String title, int mode)

 Creates a file dialog window with the specified title for loading or saving a file.

 If the value of mode is LOAD, then the file dialog is finding a file to read. If the

value of mode is SAVE, the file dialog is finding a place to write a file.

Java Program[FileDialog.java]

import javax.swing.*;

import java.awt.*;

import java.awt.event.*;

class FileDialogBoxProg extends Frame

{

 public static void main(String[] args)

 {

 FileDialog fd;

 Frame frame = new Frame();

 fd=new FileDialog(frame,"Choose a file...",FileDialog.LOAD);

 fd.setDirectory("C:\\");

 fd.setSize(300,300);

 fd.setVisible(true);

 frame.setSize(330,250);

 frame.setVisible(true);

 }

}

Advanced JAVA Programming 2 - 37 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

output

 2.15 Menu bar

 Menus are essential components of any Window based GUI. It allows the user to
choose one of several options.

 Menus are created with the help of Menu items and these menus are placed on
menubar. Following figure represents Menu, Menubar and Menuitems.

Advanced JAVA Programming 2 - 38 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Constructor

For creating Menu, menu items and Menu bar using AWT we use three constructors

Constructor Description

public MenuBar() It helps in creating the menubar on which the menus can be added.

public Menu(String title) The menu items can be created using some title.

public MenuItem(String title) The menu items are created with suitable title for particular menu.

 Steps for creating menu

Creation of menus involves many steps to be followed in an order. Following are the
steps.

Step 1 : Create menu bar

Step 2 : Create menus

Step 3 : Create menu items

Step 4 : Add menu items to menus

Step 5 : Add menus to menu bar

Step 6 : Add menu bar to the frame

Following program demonstrates these steps in a simple Java program

Java Program[MenuDemo.java]

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class MenuDemo extends Frame
{
 public static void main(String[] args)
 {
 MenuBar menuBar;
 Menu menu1;
 MenuItem mItem1, mItem2, mItem3;
 Frame frame = new Frame("MenuBar and Menu Demo");

 //Creating a menu bar
 menuBar= new MenuBar();

 //Creating menu
 menu1 = new Menu("File");
 //creating menu items

Advanced JAVA Programming 2 - 39 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 mItem1 = new MenuItem("New");
 mItem2 = new MenuItem("Open");
 mItem3 = new MenuItem("Save");

 //Adding menu items to the menu
 menu1.add(mItem1);
 menu1.add(mItem2);
 menu1.add(mItem3);

 //Adding our menu to the menu bar
 menuBar.add(menu1);

 //Adding my menu bar to the frame by calling setMenuBar() method
 frame.setMenuBar(menuBar);

 frame.setSize(330,250);
 frame.setVisible(true);
 }
}

Output

Program Explanation : In above program,

1) We have created a menubar and a menu File is added to this menu bar.

2) The menu items New, Open,Save are added to the File menu.

3) This set of Menubar, Menu and Menu Item is then added on the frame.

Advanced JAVA Programming 2 - 40 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

How to add submenus ?

We can add submenu, to a menu. It is illustrated by following program.

Java Program[SubMenuDemo.java]

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class SubMenuDemo extends Frame
{
 public static void main(String[] args)
 {
 MenuBar menuBar;
 Menu menu1,menu2;
 MenuItem mItem1, mItem2, mItem3,mItem4,mItem5;
 Frame frame = new Frame("MenuBar and Menu Demo");

 //Creating a menu bar
 menuBar= new MenuBar();

 //Creating menu
 menu1 = new Menu("File");

 //creating menu items
 mItem1 = new MenuItem("New");
 mItem2 = new MenuItem("Open");
 mItem3 = new MenuItem("Save");
 //Adding menu items to the menu
 menu1.add(mItem1);
 menu1.add(mItem2);
 menu1.add(mItem3);

 //creating sub menu
 menu2 = new Menu("Save-as");
 //Adding menu items to the submenu
 mItem4 = new MenuItem(".pdf");
 mItem5 = new MenuItem(".docx");
 //Adding menu items to the submenu
 menu2.add(mItem4);
 menu2.add(mItem5);
 //adding submenu to menu
 menu1.add(menu2);
 //Adding menu to the menu bar
 menuBar.add(menu1);

Advanced JAVA Programming 2 - 41 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 //Adding my menu bar to the frame by calling setMenuBar() method
 frame.setMenuBar(menuBar);
 frame.setSize(330,250);
 frame.setVisible(true);
 }
}

Output

 Review Question

1. Write a program in Java AWT to create Menu and Menu items.

 2.16 Programming Examples based on AWT Components and Event Handling

 Example 2.16.1 Develop an applet that receives two numerical values as input from the user
and then displays the sum of these numbers on the screen. Write the HTML code that calls
the applet.

Solution :

Step 1 :

test.html

<html>
<body>
<applet code="NumOperations" width=300 height=300>
</applet>
</body>
</html>

Advanced JAVA Programming 2 - 42 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 2 :

NumOperations.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class NumOperations extends Applet implements ActionListener
{
 Label L1,L2,L3;
 TextField T1,T2,T3;
 Button B1;
 public void init()
 {

 L1=new Label("Enter Num1 :");
 add(L1);
 T1=new TextField(15); //TextField for Num1
 add(T1);

 L2=new Label("Enter Num2 :");
 add(L2);
 T2=new TextField(15); //TextField for Num2
 add(T2);

 L3=new Label("The Result :");
 add(L3);
 T3=new TextField(15); //TextField for result
 add(T3);

 B1=new Button("Sum");
 add(B1); //Button to invoke addition operation
 B1.addActionListener(this);
 }
 public void actionPerformed(ActionEvent e)
 {
 if(e.getSource()==B1)
 {
 int a=Integer.parseInt(T1.getText());
 int b=Integer.parseInt(T2.getText());
 Float c=Float.valueOf(a+b);
 T3.setText(String.valueOf(c));
 }
 }
}

Advanced JAVA Programming 2 - 43 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

Open testhtml file on web browser.

 Example 2.16.2 Write applet program to that alternatively changes the background color after
every click of button.

Solution :
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="Button1" width=350 height=200>
</applet>
*/
public class Button1 extends Applet
{
 Button button=new Button(“Click to change the color”);
 boolean flag=true;
 public void init()
 {
 add(button);
 }
 public void paint(Graphics g)
 {
 if(flag)
 setBackground(Color.yellow);
 else
 setBackground(Color.red);
 }
 public boolean action(Event e,Object o)
 {
 if(e.target==button)
 {

Advanced JAVA Programming 2 - 44 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 flag=!flag;
 //toggle the flag values on every click of button
 repaint();
 return true;
 }
 return false;
 }
}

Output

Program Explanation

In above program,

 First of all we have created a button object ‘button’ using class Button. The string
“Click to change the color” is written on the button.

 Button button=new Button(“Click to change the color”);

 Then in the init method we have added button using add().

 Then there is a special method called action() which is used to deal with the button
clicks. There is no specific call to this method rather it is called automatically when
you press a button.

 There are two parameters that are passed to the action method, first parameter is an
object e of type Event and other one is an object of type Object.

 The property target of the Event e is compared with the button.
 if(e.target==button)

 This helps in finding whether the button is pressed or not.

 We have maintained one variable flag which is complemented on each button click.
However simply toggling the value of the variable is not sufficient to change the
color of the screen, that is why we have called the paint method repeatedly using
repaint() method.

Advanced JAVA Programming 2 - 45 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 In paint() method red and yellow background colors are set.

 Example 2.16.3 Write a Java program to create AWT radio buttons using check box group.
Explain various event listener interface.

Solution :
import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="checkgroup" width=300 height=250>

</applet>

*/

public class checkgroup extends Applet implements ItemListener

{

 String msg=" ";

 CheckboxGroup gr=new CheckboxGroup();

 Checkbox box1=new Checkbox(“Candy”,gr,true);

 Checkbox box2=new Checkbox(“Ice-cream”,gr,false);

 Checkbox box3=new Checkbox(“Juice”,gr,false);

 public void init()

 {

 =

 add(box1);

 add(box2);

 add(box3);

 box1.addItemListener(this);

 box2.addItemListener(this);

 box3.addItemListener(this);

 }

 public void itemStateChanged(ItemEvent e)

 {

 repaint();

 }

 public void paint(Graphics g)

 {

 msg="I like ";

 msg+=gr.getSelectedCheckbox().getLabel();

 g.drawString(msg,10,100);

 }

}

Advanced JAVA Programming 2 - 46 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

 2.17 Graphics

 Java has an ability to draw various graphical shapes. The applet can be used to
draw these shapes.

 These objects can be colored using various colors.
 Every applet has its own area which is called canvas on which the display can be

created.
 The co-ordinate system of Java can be represented by following Fig. 2.17.1.

Fig. 2.17.1 Co-ordinate system

 Before drawing the 2D shapes we will need a special area on the frame. This area is
called canvas. Various methods of this class are -

void setSize(int width,int height) - Sets the size of the canvas of given width and height.

void setBackground(Color c) - Sets the background color of the canvas.

void setForeground(Color c) - Sets the color of the text.

Advanced JAVA Programming 2 - 47 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.17.1 Lines

 Drawing the line is the simplest thing in Java. The syntax is,
 void drawLine(int x1,int y1,int x2,int y2);

Where x1 and y1 represents the starting point of the line and x2 and y2 represents the
ending point of the line.

Fig. 2.17.2 Line

Here is a demonstration -

Java Program[LineDemo.java]

import java.awt.*;

class LineDemo extends Canvas

{

 public LineDemo()

{

 setSize(200,200);

 setBackground(Color.white);

 }

 public static void main(String[] args)

 {

 LineDemo obj=new LineDemo();

 Frame fr=new Frame("Line");

 fr.setSize(300,300);

 fr.add(obj);

 fr.setVisible(true);

 }

 public void paint(Graphics g)

 {

 g.drawLine(0,0,200,100);//diagonal line from top-left

 g.drawLine(0,100,100,0);//anohter diagonal line

 g.drawString("Its a Line demo",50,80);

 }

}

Advanced JAVA Programming 2 - 48 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

 2.17.2 Rectangle

In Java we can draw two types of rectangles : normal rectangle and the rectangle with
round corners. The syntax of these methods are -
void drawRect(int top,int left,int width,int height)
void drawRoundRect(int top,int left,int width,int height,int xdimeter,int ydimeter)

For example

Fig. 2.17.3 Rectangle

The rectangle can be filled up with following methods,
void fillRect(int top,int left,int width,int height)
void fillRoundRect(int top,int left,int width,int height,int xdimeter,int ydimeter)

Java Program[RectangleDemo.java]

import java.awt.*;
class RectangleDemo extends Canvas
{
 public RectangleDemo()
 {

Advanced JAVA Programming 2 - 49 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 setSize(200,200);
 setBackground(Color.white);
 }
 public static void main(String[] args)
 {
 RectangleDemo obj=new RectangleDemo();
 Frame fr=new Frame("Rectangle");
 fr.setSize(300,300);
 fr.add(obj);
 fr.setVisible(true);
 }
 public void paint(Graphics g)
 {
 g.drawRect(10,10,50,50);
 g.drawRoundRect(70,30,50,30,10,10);
 g.fillRect(40,100,150,100);
 g.fillRoundRect(200,10,70,100,10,10);
 g.drawString("Its a Rectangle Demo",30,90);
 }
}

Output

 2.17.3 Oval

To draw circle and ellipse we can use the function drawOval() method. The syntax of
this method is ,
void drawOval(int top, int left, int width, int height)

To fill this oval we use fillOval() method. The syntax of this method is,
void fillOval(int top, int left, int width, int height)

We can specify the color for filling up the rectangle using setColor method. For
example

Advanced JAVA Programming 2 - 50 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 g.drawOval(10,10,200,100);
 g.setColor(Color.blue);
 g.fillOval(30,50,200,100);

The top and left values specify the upper left corner and width and height is for
specifying the width and heights respectively.

Fig. 2.17.4 Ellipse

Let us understand the functioning of these methods with the help of some example

Java Program[OvalDemo.java]

import java.awt.*;
class OvalDemo extends Canvas
{
 public OvalDemo()
 {
 setSize(200,200);
 setBackground(Color.white);
 }
 public static void main(String[] args)
 {
 OvalDemo obj=new OvalDemo();
 Frame fr=new Frame("Circle and Oval");
 fr.setSize(300,300);
 fr.add(obj);
 fr.setVisible(true);
 }
 public void paint(Graphics g)
 {
 g.drawOval(10,10,50,50);
 g.fillOval(200,10,70,100);
 g.drawString("Its Circle and Oval Demo",40,90);
 }
}

Advanced JAVA Programming 2 - 51 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

 2.17.4 Arc

To draw an arc the drawArc() and to fill an arc fillArc() are the functions. The syntax
of these methods is as follows -
void drawArc(int top,int left,int width,int height,int angle1,int angle2)
void fillArc(int top,int left,int width,int height,int angle1,int angle2)

The angle1 represents the starting angle and the angle2 represents the angular distance.

Fig. 2.17.5

Java Program[arcDemo.java]

import java.awt.*;
class arcDemo extends Canvas
{
 public arcDemo()
 {
 setSize(200,200);

Advanced JAVA Programming 2 - 52 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 setBackground(Color.white);
 }
 public static void main(String[] args)
 {
 arcDemo obj=new arcDemo();
 Frame fr=new Frame("Arc");
 fr.setSize(300,300);
 fr.add(obj);
 fr.setVisible(true);
 }
 public void paint(Graphics g)
 {
 g.drawArc(100,60,100,100,0,90);
 g.setColor(Color.green);//fills the arc with green
 g.fillArc(100,60,55,70,0,90);
 g.setColor(Color.black);
 g.drawArc(100,100,70,90,0,270);
 g.drawString("Its an arc Demo",120,160);
 }
}

Output

 2.17.5 Polygons

In order to draw polygons following function is used
 Polygon(int[] xpoints,int[] ypoints,int npoints)

The xpoints represent the array of x co-ordinates. The ypoints represent the array of
y co-ordinates. And the npoints represents the number of points.

For filling up the polygon the fillPolygon method is used.

Advanced JAVA Programming 2 - 53 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Java Program[Polyg.java]

import java.awt.*;

class Polyg extends Canvas

{

 public Polyg()

 {

 setSize(200,200);

 setBackground(Color.white);

 }

 public static void main(String[] args)

 {

 Polyg obj=new Polyg();

 Frame fr=new Frame("Polygon");

 fr.setSize(300,300);

 fr.add(obj);

 fr.setVisible(true);

 }

 public void paint(Graphics g)

 {

 int xpt[]={50,20,20,20,130};

 int ypt[]={80,30,200,200,30};

 int num=5;

 g.drawPolygon(xpt,ypt,num);

 g.setColor(Color.magenta);

 g.fillPolygon(xpt,ypt,num);

 g.setColor(Color.black);

 g.drawString("Its a polygon Demo",100,100);

 }

}

Advanced JAVA Programming 2 - 54 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

Review Questions

1. List the methods available in the draw shapes.
2. Write the short note on - Graphics programming.
3. How will you draw the following graphics in a window ?
 i) Arcs ii) Ellipses and circles in Java.
4. With an example describe in detail about how to work with 2D Shapes in Java.

 2.18 Layout Manager

Definition :

 A Layout manager is an interface which automatically arranges the controls on the
screen.

 Thus using layout manager the symmetric and systematic arrangement of the
controls is possible. In this section we will discuss following layout managers.

 2.18.1 FlowLayout

 FlowLayout manager is the simplest Layout manager.

 Using this Layout manager components are arranged from top left corner lying
down from left to right and top to bottom.

 Between each component there is some space left.

 The syntax of FlowLayout manager is as given below -
 FlowLayout(int alignment)

Where alignment denotes the alignment of the components on the applet windows. The
alignment can be denoted as :

Advanced JAVA Programming 2 - 55 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

FlowLayout.LEFT
FlowLayout.RIGHT
FlowLayout.CENTER

 Here is a Java program which makes use of seven checkboxes which are aligned on
the applet window using FlowLayout manager.

Java Program[ItemListener.java]

import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="FlowLDemo" width=200 height=200>
</applet>
*/
public class FlowLDemo extends Applet
implements ItemListener
{
 String msg=" ";
 Checkbox box1=new Checkbox("Sunday");
 Checkbox box2=new Checkbox("Monday");
 Checkbox box3=new Checkbox("Tuesday");
 Checkbox box4=new Checkbox("Wednesday");
 Checkbox box5=new Checkbox("Thursday");
 Checkbox box6=new Checkbox("Friday");
 Checkbox box7=new Checkbox("Saturday");
 public void init()
 {
 //creating FlowLayout manager
 setLayout(new FlowLayout(FlowLayout.LEFT));
 //adding the components with Left alignment
 add(box1);
 add(box2);
 add(box3);
 add(box4);
 add(box5);
 add(box6);
 add(box7);
 //registering the checkboxes to EventListener
 box1.addItemListener(this);
 box2.addItemListener(this);
 box3.addItemListener(this);
 box4.addItemListener(this);
 box5.addItemListener(this);

Advanced JAVA Programming 2 - 56 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 box6.addItemListener(this);
 box7.addItemListener(this);
 }
 public void paint(Graphics g)
 {
 //if box1 checkbox is clicked
 if(box1.getState())
 msg="Sunday ";//then print the corresponding day
 if(box2.getState())
 msg="Monday ";
 if(box3.getState())
 msg="Tuesday ";
 if(box4.getState())
 msg="Wednesday ";
 if(box5.getState())
 msg="Thursday ";
 if(box6.getState())
 msg="Friday ";
 if(box7.getState())
 msg="Saturday ";
 g.drawString(msg,50,140);
 }
 public void itemStateChanged(ItemEvent e)
 {
 repaint();
 }
}

Output

Advanced JAVA Programming 2 - 57 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Program Explanation :

In above program, since we are using Check box control the ItemListener interface is
used. And for registering these controls to receive the events we have written following
lines in the init method.
box1.addItemListener(this);
box2.addItemListener(this);
box3.addItemListener(this);
box4.addItemListener(this);
box5.addItemListener(this);
box6.addItemListener(this);
box7.addItemListener(this);

We have written a method public void itemStateChanged (ItemEvent e) because
ItemListener interface is used.

 2.18.2 BorderLayout

 In BorderLayout there are four components at the four sides and one component
occupying large area at the centre.

 The central area is called CENTER and the components forming four sides are
called LEFT,RIGHT,TOP and BOTTOM.

 Following program consists of one big message stored in variable msg which is to
be displayed at the centre. And in the init method it shows that four sides are
occupied by the Buttons.

Java Program[BorderLDemo.java]

import java.applet.*;
import java.awt.*;
import java.util.*;
/*
<applet code="BorderLDemo" width=500 height=300>
</applet>
*/
public class BorderLDemo extends Applet
{
String msg="India is my country.\n"+"All Indians are my
 brothers and sisters.\n"+
 "I love my country and I am proud of its rich
 and varied heritage."+
 "I shall always strive to be worthy of it.\n"+
 "I shall give respect to my parents,teachers and
 elders and treat everyone with courtesy.\n"+

Advanced JAVA Programming 2 - 58 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 "To my country, to my people, I pledge my
 devotion.\n"+
 "In their well being and prosperity alone lies my
 happiness.\n"+
 " - Jai Hind.";
 public void init()
 {
 setLayout(new BorderLayout());
 add(new Button("North"),BorderLayout.NORTH);
 add(new Button("South"),BorderLayout.SOUTH);
 add(new Button("East"),BorderLayout.EAST);
 add(new Button("West"),BorderLayout.WEST);
 add(new TextArea(msg),BorderLayout.CENTER);
 }
}

Output

Program Explanation :

In the above program, we have created object for BorderLayout manager using
setLayout(new BorderLayout());

Then using
BORDER.NORTH
BORDER.SOUTH
BORDER.EAST
BORDER.WEST

 The four sides are set with the help of Button control. The central large area is
formed using TextArea control which is called as BORDER.CENTER.

 The concept of BorderLayout can then be clearly understood with the help of above
given output.

Advanced JAVA Programming 2 - 59 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 In this Layout manager, we can add one more method called getInsets(). This
method allows us to leave some space between underlying window on the applet
and Layout manager.

 We have used this method in the following program. The syntax of Insets method
is

 Insets(int top,int left,int bottom,int right)

The top,left,bottom and right parameters specify the amount of space to be left.

Java Program

import java.applet.*;
import java.awt.*;
import java.util.*;
/*
<applet code="BorderLDemo" width=500 height=300>
</applet>
*/
public class BorderLDemo extends Applet
{
 String msg="India is my country.\n"+"All Indians are my
 brothers and sisters.\n"+
 "I love my country and I am proud of its rich
 and varied heritage."+
 "I shall always strive to be worthy of it.\n"+
 "I shall give respect to my parents,teachers
 and elders and treat everyone with
 courtesy.\n"+
 "To my country, to my people, I pledge my
 devotion.\n"+
 "In their well being and prosperity alone lies
 my happiness.\n"+
 " - Jai Hind.";
 public void init()
 {
 setBackground(Color.green);
 setLayout(new BorderLayout());
 add(new Button("North"),BorderLayout.NORTH);
 add(new Button("South"),BorderLayout.SOUTH);
 add(new Button("East"),BorderLayout.EAST);
 add(new Button("West"),BorderLayout.WEST);
 add(new TextArea(msg),BorderLayout.CENTER);
 }
 public Insets getInsets()
{
 return new Insets(20,20,20,20);

Advanced JAVA Programming 2 - 60 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

}
}

Output

This Space is left in between

 Example 2.18.1 Write a Java program which create border layout and adds two text boxes to it.

Solution :
BorderLDemo.java

import java.applet.*;
import java.awt.*;
import java.util.*;
/*
<applet code="BorderLDemo" width=500 height=300>
</applet>
*/
public class BorderLDemo extends Applet
{
 public void init()
 {
 setLayout(new BorderLayout());
 add(new Button("Center"),BorderLayout.CENTER);
 add(new Button("East"),BorderLayout.EAST);
 add(new Button("West"),BorderLayout.WEST);
 add(new TextField("Technical"),BorderLayout.NORTH);
 add(new TextField("Books"),BorderLayout.SOUTH);
 }
}

Advanced JAVA Programming 2 - 61 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

 2.18.3 GridLayout

 GridLayout is a Layout manager used to arrange the components in a grid. The
syntax of GridLayout manager is

 GridLayout(int n,int m)

Where n represents total number of rows and m represents total number of columns.

 In the following program we have arranged Buttons in a grid form.

Java Program[GridLDemo.java]

import java.awt.*;

import java.applet.*;

/*

<applet code="GridLDemo" width=400 height=400>

</applet>

*/

public class GridLDemo extends Applet

{

 int n=4,m=3;

 public void init()

 {

 setLayout(new GridLayout(n,n));

 for(int i=0;i<n;i++)

Advanced JAVA Programming 2 - 62 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 {

 for(int j=0;j<m;j++)

 {

 switch(i)

 {

 case 0:if(j==0) //Button[0,0]

 add(new Button("Red"));

 else if(j==1) //Button[0,1]

 add(new Button("Green"));

 else if(j==2) //Button[0,2]

 add(new Button("Blue"));

 break;

 case 1:if(j==0) //Button[1,0]

 add(new Button("Orange"));

 else if(j==1) //Button[1,1]

 add(new Button("Pink"));

 else if(j==2) //Button[1,2]

 add(new Button("Magenta"));

 break;

 case 2:if(j==0) //Button[2,0]

 add(new Button("Cyan"));

 else if(j==1) //Button[2,1]

 add(new Button("Gray"));

 else if(j==2) //Button[2,2]

 add(new Button("Yellow"));

 break;

 case 3:if(j==0) //Button[3,0]

 add(new Button("Black"));

 else if(j==1) //Button[3,1]

 add(new Button("White"));

 else if(j==2) //Button[3,2]

 add(new Button("LightGray"));

 break;

 }//end of switch

 }//end of inner for

 }//end of outer for

}// end of function init

}//end for class

Advanced JAVA Programming 2 - 63 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

 2.18.4 CardLayout

 Sometimes we want to perform various sets of graphical controls at a time then
CardLayout is used.

 Thus CardLayout manager allows us to have more than one layouts on the applet.

 The CardLayout is conceptually thought as a collection of cards lying on a panel.

 We have to follow following steps -

Step 1 : We have to create two objects

1. Panel object

2. CardLayout object

Step 2 : Then we have to add the cards on the panel using add() method. For example -

 panel_obj.setLayout(layout_obj);

where panel_obj is an object of panel anf layout_obj is an object of CardLayout

Advanced JAVA Programming 2 - 64 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 3 : Finally we have to add the object of panel to main applet. For example -

add(panel_obj);

These all stages seem to be complicated. Hence let us understand following program
which implements CardLayout.

Java Program[cardDemo.java]

//This program demonstates cardLayout
//The dynamic selection of fruit/flower/colour can be made
//using cardlayout component
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="cardDemo" width=300 height=100>
</applet>
*/
public class cardDemo extends Applet implements
ActionListener,MouseListener
{
 Checkbox mango,apple,rose,lotus,Red,Green;
 Panel panel_obj;
 CardLayout layout_obj;
 Button fruit,flower,colour;
 public void init()
 {
 fruit=new Button("Fruit");
 flower=new Button("Flower");
 colour=new Button("Colour");
 //adding the button controls
 add(fruit);
 add(flower);
 add(colour);
 //getting object of Cardlayout
 layout_obj=new CardLayout();
 //getting object of Panel
 panel_obj=new Panel();
 panel_obj.setLayout(layout_obj);
 //adding checkbox controls for fruits
 mango=new Checkbox("Mango");
 apple=new Checkbox("Apple");
 //adding checkbox controls for flowers
 rose=new Checkbox("Rose");
 lotus=new Checkbox("Lotus");
 //adding checkbox controls for colors

Advanced JAVA Programming 2 - 65 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Red=new Checkbox("Red");
 Green=new Checkbox("Green");

 Panel fruit_pan=new Panel();
 fruit_pan.add(mango);
 fruit_pan.add(apple);

 Panel flower_pan=new Panel();
 flower_pan.add(rose);
 flower_pan.add(lotus);

 Panel colour_pan=new Panel();
 colour_pan.add(Red);
 colour_pan.add(Green);

 panel_obj.add(fruit_pan,"Fruit");
 panel_obj.add(flower_pan,"Flower");
 panel_obj.add(colour_pan,"Colour");
 add(panel_obj);
 //register the components to event listener
 fruit.addActionListener(this);
 flower.addActionListener(this);
 colour.addActionListener(this);
 addMouseListener(this);
}
//following empty methods are necessary for mouse events
public void mousePressed(MouseEvent m)
{
 layout_obj.next(panel_obj);
}
public void mouseClicked(MouseEvent m)
{
}
public void mouseEntered(MouseEvent m)
{
}
public void mouseExited(MouseEvent m)
{
}
public void mouseReleased(MouseEvent m)
{
}
public void actionPerformed(ActionEvent e)
{

Advanced JAVA Programming 2 - 66 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 if(e.getSource()==fruit)
 {
 layout_obj.show(panel_obj,"Fruit");
 }
 else if(e.getSource()==flower)
 {
 layout_obj.show(panel_obj,"Flower");
 }
 else if(e.getSource()==colour)
 {
 layout_obj.show(panel_obj,"Colour");
 }
 }//end for actionPerformed method
}//end of class

Output(Run 1)

Output(Run 2)

Output (Run 3)

Advanced JAVA Programming 2 - 67 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Program Explanation :

 It is clear from the output that we can have a combination of various components
lying on the same applet and can be invoked as per need. That mean if we click on
Fruit button then we should get two checkboxes namely : Mango and Apple.

 If we click on Flower button then we should get two checkboxes namely : Rose and
Lotus. Similarly, if we click on Colour button we should get two checkboxes namely :
Red and Green.

 In above program, we have used to event listener interfaces : ActionListener and
MouseListener.

 We have created panel object and Layout object.

 In the init method we have first created and added the Button controls. Then
CardLayout is placed on the panel.

 The panel is then set for the applet window.

 Various components such as checkboxes and Buttons are added to the panel.

 In order to understand mouse events some necessary empty methods are written.

 In the actionPerformed() method, on the click of Fruit button, two corresponding
check boxes are shown. Same is true for Flower and Colour buttons.

 2.18.5 GridBagLayout

 The GridBagLayout is the most flexible and complex layout manager.

 The GridBagLayout manager places the components in rows and columns allowing
the components to occupy multiple rows and columns. This is called display area.

 GridBagLayout performs three functions using values from the
GridBagConstraints parameter in the add() method.

1. Grid position, width and height describe the display area using gridx, gridy,
Gridwidth and gridheight values.

2. Position within the display area using fill, ipadx and ipady.

3. Identifying rows and columns which receiveextra space on expansion using
weightx, and weighty.

 The layout can be set as follows
 Container pane=frame.getContentPane();
 pane.setLayout(new GridBagLayout());

 The component can be added as
 pane.add(component,constraintObject);//pane is a container pane

Advanced JAVA Programming 2 - 68 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 The following values are then set -
o gridx and gridy : These values denote the integer column and row value of the

component.
o gridwidth and gridheight : They denote the number of columns and rows the

component occupies.
o weightx and weighty : They denote the extra space occupied by the component

horizontally or vertically when the output window is resized.

o fill : The fill value denotes how the component should expand within the display area.

Typical values are -
 GridBagConstraints.NONE // Can not expand (Default)

 GridBagConstraints.VERTICAL // Expand vertically

 GridBagConstraints.HORIZONTAL // Expand horizontally

 GridBagConstraints.BOTH // Expand vertically and horizontally

o ipadx and ipady : These values denote increase and decrease in horizontal or vertical

preferred size of the component.Default value is 0.
 Example 2.18.2 Write a simple Java program that illustrates the use of GridBagLayout.

Solution :

import java.awt.*;
import java.applet.*;
/*
<applet code="GridBagLayoutDemo" width=400 height=400>
</applet>
*/
public class GridBagLayoutDemo extends Applet
{
 public void init()
 {
 Button B;
 setLayout(new GridBagLayout());
 GridBagConstraints gBC = new GridBagConstraints();
 gBC.fill = GridBagConstraints.HORIZONTAL;//placing the components horizontally
 B = new Button("Button 1");//first component
 gBC.weightx = 0.5;
 gBC.gridx = 0;
 gBC.gridy = 0;
 add(B, gBC);

 B = new Button("Button 2");//second component
 gBC.gridx = 2;
 gBC.gridy = 0;
 add(B, gBC);

Advanced JAVA Programming 2 - 69 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 B = new Button("Button 3"); //third component
 gBC.ipady = 40; //This component is broad
 gBC.weightx = 0.0;
 gBC.gridwidth = 3;
 gBC.gridx = 0;
 gBC.gridy = 1;
 add(B, gBC);

 TextField T = new TextField("Hello Friends!!!");//forth component
 gBC.ipady = 0;
 gBC.weightx = 0.0;
 gBC.gridx = 1;
 gBC.gridwidth = 2;
 gBC.gridy = 2;
 T.setEditable(false);//text field is not editable
 add(T, gBC);
 }
}

Output

 Before Expanding After Expanding

Review Questions

1. What is the function of layout manager ? Describe in detail about the different layout in Java
GUL.

2. What is layout management ? State the various types of layout supported by JAVA. Which
layout is default one ? Discuss the components of swing.

Advanced JAVA Programming 2 - 70 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 2.19 Multiple Choice Questions

Q.1 Give the Abbreviation of AWT :

 a Applet Windowing Toolkit b Abstract Windowing Toolkit

 c Absolute Windowing Toolkit d None of these

Q.2 In which places can put the event handling code _________.

 a same class b other class

 c annonymous class d all of the above

Q.3 In Java an event is an _______which specifies the change of state in the source.

 a class b object

 c int d string

Q.4 The Following steps are required to perform 1) Implement the listener interface and

overrides its methods 2) Register the component with the listener

 a Exception Handling b String Handling

 c Event Handling d None of the above

Q.5 Various event classes and listener interfaces for event handling are present in following

package :

 a java.awt b java.awt.graphics

 c java.awt.event d None of these

Q.6 The ActionListener interface is used for handling action events by ____________.

 a JButton b JCheckbox

 c JMenuItem d All of these

Q.7 Which is the container that doesn't contain title bar and MenuBars. It can have other

components like button, textfield etc ?

 a Window b Frame

 c Panel d Container

Q.8 Clicking a mouse button will always generate which event ?

 a MouseButtonEvent b ActionEvent

 c MouseClickEvent d MouseEvent

Q.9 By which method we can set or change the text in a Label in AWT ?

 a setText() b getText()

 c addText() d all of these

Advanced JAVA Programming 2 - 71 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.10 Which layout manager places components in one of five regions : north, south, east,

west, and center ?

 a AbsoluteLayout b GridLayout

 c BorderLayout d FlowLayout

Q.11 Arranges the components horizontally :

 a BorderLayout b CardLayout

 c GridLayout d FlowLayout

Q.12 The most commonly used layout managers are _________.

 a FlowLayout b BorderLayout

 c GridLayout d All of these

Q.13 Default layout manager for subclasses of window is _________.

 a cardlayout b GridBaglayout

 c Frame d BorderLayout

Answer Keys for Multiple Choice Questions :

Q.1 b Q.2 d Q.3 b Q.4 c

Q.5 c Q.6 d Q.7 c Q.8 d

Q.9 a Q.10 c Q.11 d Q.12 d

Q.13 d

Advanced JAVA Programming 2 - 72 Event Handling using AWT / Swing Components

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Notes

(3 - 1)

UNIT III

3 GUI Programming

Syllabus

Designing Graphical User Interfaces in Java, Components and Containers, Basics of Components,
Using Containers, Layout Managers, AWT Components, Adding a Menu to Window, Extending GUI
Features Using Swing Components, Java Utilities (java.util Package) The Collection Framework :
Collections of Objects, Collection Types, Sets, Sequence, Map, Understanding Hashing, and Use of
Array List & Vector.

Contents

3.1 Designing Graphical User Interfaces in Java

3.2 Components and Containers

3.3 Basics of Components

3.4 Extending GUI Features Using Swing Components

3.5 Java Utilities (java.util Package)

3.6 The Collection Framework

3.7 Collections of Objects and Types

3.8 List Interface

3.9 Vector

 3.10 Set Interface

 3.11 Map Interface

 3.12 Multiple Choice Questions

Advanced JAVA Programming 3 - 2 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 3.1 Designing Graphical User Interfaces in Java

 Swing is another approach of graphical programming in Java.

 Swing creates highly interactive GUI applications.

 It is the most flexible and robust approach.

 3.1.1 Difference between AWT and Swing

Sr. No. AWT Swing

1. The Abstract Window ToolKit is a heavy
weight component because every graphical
unit will invoke the native methods.

The Swing is a light weight component
because it’s the responsibility of JVM to
invoke the native methods.

2. The look and feel of AWT depends upon
platform.

As Swing is based on Model View Controller
pattern, the look and feel of swing
components in independent of hardware and
the operating system.

3. AWT occupies more memory space. Swing occupies less memory space.

4. AWT is less powerful than Swing. Swing is extension to AWT and many
drawbacks of AWT are removed in Swing.

 3.2 Components and Containers

The most commonly used component classes are -

Component Purpose

AbstractButton Abstract class for the buttons

ButtonGroup It creates the group of buttons so that they behave
in mutually exclusive manner.

JApplet The swing applet class

JButton The swing button class

JCheckBox The swing check box

JComboBox The swing combo box

JLabel The swing label component

Advanced JAVA Programming 3 - 3 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

JRadioButton The radio button component

JTextArea The text area component

JTextField The text field component

JSlider The slider component

We will learn and understand these components with the help of programming
examples.

 3.3 Basics of Components

In order to display any JComponent on the GUI, it is necessary to add this component
to the container first. If you do not add these components to container then it will not be
displayed on the GUI. The swing class component hierarchy is as shown by following
Fig. 3.3.1. (See Fig. 3.3.1 on next page).

There are two important features of swing components - Firstly, all the component
classes begin with the letter J and secondly all these GUI components are descendant of
JComponent class. Let us now learn how to place these components on the GUI.

Review Question

1. List and briefly discuss the swing components in Java.

 3.4 Extending GUI Features Using Swing Components

 Swing is a large system. It is one part of Java Foundation Classes (JFC).

 It has got good look and feel.

 There is a rich collection of swing components that can be used to provide the
advanced user interface.

 Various classes that can be used for placing the components are JApplet, JLabel,
JTextField, JButton, JCheckBox, JTree, JTabbedPane and so on.

 3.4.1 JApplet

The JApplet is a fundamental swing class. It extends the Applet class. This is much
more powerful than the Applet class. It supports the pane. Various panes are content
pane, glass pane and root pane. The add method can be used to add the content pane.
The add method of Container class can be used to add the components on the GUI.

Advanced JAVA Programming 3 - 4 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fig. 3.3.1 Swing class component hierarchy

Advanced JAVA Programming 3 - 5 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Example program

import java.awt.*;
import javax.swing.*;
/*
<applet code="TxtFieldProg" width=300 height=200>
</applet>
*/
public class TxtFieldProg extends JApplet
{
 public void init()
 {
 JTextField T;
 Container contentPane=getContentPane();
 contentPane.setLayout(new FlowLayout());
 T=new JTextField("Hello",20);
 contentPane.add(T);
 T=new JTextField(20);
 contentPane.add(T);
 }
}

For getting the output of the above program following commands can be given on the
command prompt -

F:\SwingProg>javac TxtFieldProg.java
F:\SwingProg>AppletViewer TxtFieldProg.java

The Applet viewer will display the GUI as follows -

Output

Advanced JAVA Programming 3 - 6 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Program explanation

To place the control textfield on the GUI we have followed following steps -

1. Using the getContentPane method an object for the Container class is created.
This object is taken in the variable contentPane.

2. The Layout is set using the contentPane object by the statement
 contentPane.setLayout(new FlowLayout());

 The default layout is FlowLayout but you can set other layout managers such as
GridLayout, BorderLayout and so on.

3. After setting the layout manager, the TextField component can be created and
placed using add method. In above program, we have created two text fields. In
the first text field, the string “Hello” is already written during its creation but the
second text field is kept blank and some string can be written into it during the
execution.

 3.4.2 Creating Frames

 A Frame is a top-level window with a title and a border. The Frames in java works
like the main window where the components like JButton,JLabel, JComboBox and
so on can be placed. In Java swing the top-level windows are represented by the
JFrame class. For creating the frame following statement can be used -

JFrame f=new JFrame(“My First Frame Program”);

 The frames are not visible initially, hence we have to make them visible by
f.setVisible(true);

 The close button of the frame by default performs the hide operation for the JFrame.
Hence we have to change this behavior to window close operation by setting the
setDefaultCloseOperation() to EXIT_ON_CLOSE value.

 Any suitable size of the frame can be set by setSize(int height,int width) function.

 Example 3.4.1 Write a JFrame with a hello world program.
Solution :

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

object of JFrame class
Title to the Frame window.

Advanced JAVA Programming 3 - 7 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

public class FrameProg extends JFrame
{
 public static void main(String[] args)
 {
 new FrameProg();
 }
 FrameProg()
 {
 JFrame f=new JFrame("Frame Demo");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setVisible(true);
 f.setSize(300,300);
 Container content=f.getContentPane();
 content.setLayout(new FlowLayout());
 content.add(new JLabel("Hello World"));

 }
}

Output

Advanced JAVA Programming 3 - 8 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 3.4.3 Label and ImageIcon

 The icons are encapsulated by ImageIcon class. The constructors are -
 ImageIcon(string fname)
 ImageIcon(URL url)

The fname denotes the name of the file which contains the icon. The url denotes the
resource of image.

 The JLabel is a component for placing the label component. The JLabel is a subclass
of JComponent class. The syntax for the JLabel is -

 JLabel(Icon ic);
 Label(String s);
 JLabel(String s, Icon ic, int alignment)

 The alignment can be LEFT, RIGHT, CENTER, LEADING and TRADING. The icons
and text methods associated with the label are -

 Icon getIcon()
 void setIcon(Icon ic) ic represents the icon file
 String getText();

 void setText(String s); s represents the string

 Following simple Java Program illustrates the use of JLabel component -

Java Program[LabelProg.java]

import java.awt.*;
import javax.swing.*;
/*
<applet code="LabelProg" width=300 height=200>
</applet>
*/
public class LabelProg extends JApplet
{
 public void init()
 {
 Container contentPane=getContentPane();
 ImageIcon i=new ImageIcon("innocence.gif");
 JLabel L1=new JLabel("Innocence",i,JLabel.LEFT);
 contentPane.add(L1);

 }
}

Advanced JAVA Programming 3 - 9 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

 3.4.4 TextField

 The JTextField is extended from the JComponent class. The JTextField allows us to
add a single line text.

 The syntax of using JTextField is -
JTextField();
JTextField(int col_val);
JTextField(String s,int col_val);
JTextField(String s);

 The program making use of TextField is as given below -

Java Program[TxtFieldProg.java]

import java.awt.*;
import javax.swing.*;
/*
<applet code="TxtFieldProg" width=300 height=200>
</applet>
*/
public class TxtFieldProg extends JApplet
{
 public void init()
 {
 JTextField T;
 Container contentPane=getContentPane();
 contentPane.setLayout(new FlowLayout());

Advanced JAVA Programming 3 - 10 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 T=new JTextField("Hello",20);
 contentPane.add(T);
 T=new JTextField(20);
 contentPane.add(T);
 }
}

 For getting the output of the above program following commands can be given on
the command prompt -

F:\SwingProg>javac TxtFieldProg.java
F:\SwingProg>AppletViewer TxtFieldProg.java

The Applet viewer will display the GUI as follows -
Output

Program explanation

To place the control textfield on the GUI we have followed following steps -

1. Using the getContentPane method an object for the container class is created.
This object is taken in the variable contentPane.

2. The layout is set using the contentPane object by the statement
 contentPane.setLayout(new FlowLayout());

 The default layout is FlowLayout but you can set other layout managers such as
GridLayout, BorderLayout and so on.

3. After setting the layout manager, the TextField component can be created and
placed using add method. In above program, we have created two text fields. In
the first text field, the string “Hello” is already written during its creation but the
second text field is kept blank and some string can be written into it during the
execution.

 3.4.5 TextArea

The JTextArea is a GUI control which allows us to write multi-line text. We can set the
desired number of rows and number of columns so that a long big message can be written
using this control.

Advanced JAVA Programming 3 - 11 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The syntax for JTextArea is
JTextArea(String str,int rows,int cols);

In the following Java program, there are two GUI controls on the window - the
textarea and the push button. The idea is that : just type something within the text area
and then click the push button. Whatever text you type will get displayed on the console
window.

Java Program[TextAreaProg.java]

import java.awt.event.*;
import java.awt.*;
import javax.swing.*;
class TextAreaProg
implements ActionListener
{
 JTextArea TA;
 public static void main(String[] args)
 {
 new TextAreaProg(); //invoke the function for demonstrating TextArea control
 }
 TextAreaProg() //definition of the function
 {
 JFrame f=new JFrame(); //create a Frame window
 Container content=f.getContentPane();//get the Container class object
 content.setLayout(new FlowLayout());//set the layout manager
 JLabel L=new JLabel("Enter some text here...");//create a Label control
 content.add(L); //using add method add the label on the GUI
 TA=new JTextArea("",10,20); //create a TextArea control with rows=10 and col=20
 content.add(TA);//using add method add the TextArea control on GUI
 JButton B=new JButton("Submit");//create a push button control
 content.add(B);//place this control on the GUI using add method
 B.addActionListener(this);//invoke action listener for button click event
 f.setSize(300,300);//set the size of the frame window
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);//exit on closing
 f.setVisible(true);//set the visibility of frame as true
 }
 public void actionPerformed(ActionEvent e)//handling the event when button is clicked
 {
 String s=TA.getText();//get the string typed in textarea
 System.out.println("You have typed following text...\n"+s);//display it on the consol
 }
}

Advanced JAVA Programming 3 - 12 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

Now if we click Submit button then on the command-prompt window we can see
following text-

 3.4.6 Buttons

 The swing push button is denoted by using JButton class.

 The swing button class provides the facilities that can not be provided by the applet
button class. For instance you can associate some image file with the button.

 The swing button classes are subclasses of AbstractButton class.

 The AbstractButton class generates action events when they are pressed. These
events can be associated with the Push buttons.

 We can associate an icon and/or string with the JButton class. The syntax of JButton
is

JButton(Icon ic);

JButton(String s);

JButton(String s,Icon ic);

Advanced JAVA Programming 3 - 13 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Following program illustrates the use of Icon and the string for the JButton class -

Java Program[ButtonProg.java]

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="ButtonProg" width=500 height=300>
</applet>
*/
public class ButtonProg extends JApplet//inherited from JApplet
implements ActionListener
{
 JTextField T;
 public void init()
 {

 Container contentPane=getContentPane();
 contentPane.setLayout(new FlowLayout());
 ImageIcon apple=new ImageIcon("apple.gif");
 JButton B1=new JButton(apple);
 B1.setActionCommand("Apple");
 B1.addActionListener(this);
 contentPane.add(B1);//adding button on GUI

 ImageIcon orange=new ImageIcon("orange.gif"); //Creating image icon
 JButton B2=new JButton(orange); //associating image with button
 B2.setActionCommand("Orange");
 B2.addActionListener(this); //button pressed event
 contentPane.add(B2);

 ImageIcon grapes=new ImageIcon("grapes.gif");
 JButton B3=new JButton(grapes);
 B3.setActionCommand("Grapes");
 B3.addActionListener(this);
 contentPane.add(B3);
 T=new JTextField(20);
 contentPane.add(T);//placing the textfield on the GUI
 }
 public void actionPerformed(ActionEvent e)
 {
 T.setText(e.getActionCommand()); //retrieving the text associated with button
 }
}

Creating object of Container class

Creating Button component

Advanced JAVA Programming 3 - 14 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

For getting the output open the command-prompt and give the following commands -
F:\SwingProg>javac ButtonProg.java
F:\SwingProg>AppletViewer ButtonProg.java

and you will get the applet as follows -
Output

Program explanation

The above program is inherited from the JApplet class. In the init method, we have
written the code -

1. Create a container object by using the getContentPane method. This object is
now in the variable contentPane.

2. A layout manager such as FlowLayout is used to set the layout of the GUI.

3. The button components are then placed on the GUI using the add method.

4. These push buttons are associated with some images using ImageICon class. To
this ImageIcon class appropriate gif file is passed as an argument. Thus
corresponding image gets associated with each corresponding push button.

5. We have associated an ActionListener event with this program. This is necessary
to handle the events when a push button gets pressed. We have associated some
command string when the particular button is pressed. This can be done using
setActionCommand method. The event handler can be invoked using the
methods addActionListener(this). When this a call to this method is given the
control goes to the function actionPerfomed. In this method we are simply
displaying the appropriate command string in the textbox.

Advanced JAVA Programming 3 - 15 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 3.4.7 Checkboxes

 The Check Box is also implementation of AbstractButton class. But the immediate
superclass of JCheckBox is JToggleButton.

 The JCheckBox supports two states true or false.

 We can associate an icon, string or the state with the checkboxes. The syntax for the
Check Box will be -

JCheckBox(Icon ic);
JCheckBox(Icon ic, boolean state);
JCheckBox(String s);
JCheckBox(String s,boolean state);
JCheckBox(String s,Icon ic,boolean state);

 Following program illustrates the use of check box -

Java Program[CheckBoxProg.java]

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="CheckBoxProg" width=300 height=300>
</applet>
*/
public class CheckBoxProg extends JApplet
implements ItemListener
{
 JTextField T;
 public void init()
 {
 Container contentPane=getContentPane();
 contentPane.setLayout(new FlowLayout());
 JCheckBox chk1=new JCheckBox("Apple");
 chk1.addItemListener(this);// invoking the event handler
 contentPane.add(chk1);
 JCheckBox chk2=new JCheckBox("Orange");
 chk2.addItemListener(this); // invoking the event handler
 contentPane.add(chk2);
 JCheckBox chk3=new JCheckBox("Grapes");
 chk3.addItemListener(this); // invoking the event handler
 contentPane.add(chk3);
 T=new JTextField(5);
 contentPane.add(T);
 ButtonGroup bg=new ButtonGroup();

Advanced JAVA Programming 3 - 16 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 bg.add(chk1);
 bg.add(chk2);
 bg.add(chk3);

 }
 public void itemStateChanged(ItemEvent e)
 {
 JCheckBox chk=(JCheckBox)e.getItem();
 T.setText(chk.getText());//displaying the appropriate string in textbox
 }
}

Output

Program explanation

In above program, the ItemListener event is implemented. Using the
addItemListener(this) method the event handler function itemStateChanged is invoked.
Thus on the clicking corresponding checkbox, the appropriate string will be displayed in
the text field.

 3.4.8 Radio Buttons

 The JRadioButton is a subclass of JToggleButton. This control is similar to the
checkboxes.

 The syntax for the Radio Box will be -
JRadioButton(Icon ic);
JRadioButton (Icon ic, boolean state);
JRadioButton (String s);
JRadioButton (String s,boolean state);
JRadioButton (String s,Icon ic,boolean state);

 Following program illustrates the use of radio buttons.

ButtonGroup helps the objects to behave
mutually exclusive.

Advanced JAVA Programming 3 - 17 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Java Program[RadioButProg.java]

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="RadioButProg" width=300 height=300>
</applet>
*/
public class RadioButProg extends JApplet
implements ActionListener
{
 JTextField T;
 public void init()
 {

 Container contentPane=getContentPane();
 contentPane.setLayout(new FlowLayout());

 JRadioButton rb1=new JRadioButton("Apple");
 rb1.addActionListener(this);
 contentPane.add(rb1);

 JRadioButton rb2=new JRadioButton("Orange");
 rb2.addActionListener(this);
 contentPane.add(rb2);
 JRadioButton rb3=new JRadioButton("Grapes");
 rb3.addActionListener(this);

 contentPane.add(rb3);
 T=new JTextField(5);
 contentPane.add(T);
 ButtonGroup bg=new ButtonGroup();
 bg.add(rb1);
 bg.add(rb2);
 bg.add(rb3);
 }
 public void actionPerformed(ActionEvent e)
 {

 T.setText(e.getActionCommand());
 }
}

Advanced JAVA Programming 3 - 18 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

Program explanation

We have used ActionListener event to handle the radio button click. The
addActionListener method is invoked when the button gets clicked. The appropriate
command string can be displayed in the textfield.

 3.4.9 Lists

JList is a component that displays list of text items. User can select one or multiple
items from this list.

Various components of JList component are
JList() Creates a JList with an empty, read-only, model.

JList(ary[] listData) Creates a JList that displays the elements in the specified
array.

JList(ListModel<ary> dataModel) Creates a JList that displays elements from the specified,
non-null, model.

Various methods of this component are -

Method Description

int getSelectedIndex() It returns the index of selected item of the list.

void setListData(Object[] list) It is used to create a read-only ListModel from an array of
objects.

Advanced JAVA Programming 3 - 19 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Java Program

import javax.swing.*;

import java.awt.*;

/*

<applet code="ListDemo" width=200 height=200>

</applet>

*/

public class ListDemo extends JApplet

{

 public void init()

 {

 Container contentPane=getContentPane();

 contentPane.setLayout(new BorderLayout());

 String [] str={"Windows98\n","Windows2000\n","Windows7\n","Windows8\n","Windows10"};

 JList list = new JList(str);

 list.setBounds(100,100, 75,75);

 contentPane.add(list);

 }

}

Output

 3.4.10 Choices

 JList and JCombobox are very similar components but the JList allows to select
multiple selections whereas the JCombobox allows only one selection at a time.

 A combo box is a combination of text field and the drop down list. The JComboBox
is a subclass of JComponent class.

Advanced JAVA Programming 3 - 20 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Java Program[ComboBoxProg.java]

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="ComboBoxProg" width=300 height=300>
</applet>
*/
public class ComboBoxProg extends JApplet
implements ItemListener
{
 JLabel L;
 public void init()
 {
 Container contentPane=getContentPane();
 contentPane.setLayout(new FlowLayout());
 JComboBox co=new JComboBox();
 co.addItem("apple");
 co.addItem("orange");
 co.addItem("grapes");
 co.addItemListener(this);
 contentPane.add(co);

 L=new JLabel(new ImageIcon("apple.gif"));
 contentPane.add(L);

 }
 public void itemStateChanged(ItemEvent e)
 {
 String str=(String)e.getItem();
 L.setIcon(new ImageIcon(str+".gif"));//invokes the appropriate image file
 }
}

Advanced JAVA Programming 3 - 21 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

Program explanation

Using the new JComboBox() the object for the combo box can be created. This object
then invokes the method addItem for adding the items in the combo box. In the event
handler function itemStateChanged the getItem method is used to retrieve the selected
string.

 Example 3.4.2 Create a phonebook look-up application that displays the phone number for the
person selected and looks up the name for an entered phone number. Create a GUI that
consists of a pull-down list of names, a text field for entry of phone numbers to look up and a
command button to activate the look-up operation. It is your job to add the event handling to
the application. There are three different events that must be handled. When the user changes
the name in the pull-down list, the application should look up the appropriate telephone
number in the phonebook. When the user enters a phone number in the text field and presses
return or selects the button, the application should look up the number in the reverse
phonebook and change the name in the pull-down list. Finally, the application should restrict
input in the text field to digits and the '–' character. If a look-up operation fails, the
application should simply beep.

Advanced JAVA Programming 3 - 22 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Solution :

//Program for handling the telephone Directory using event handling
import java.util.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="TelephoneDir" width=300 height=300>
</applet>
*/
public class TelephoneDir extends JApplet
implements ItemListener,ActionListener
{
 JTextField T;
 JComboBox co;
 JButton B;
 public void init()
 {
 Container contentPane=getContentPane();
 contentPane.setLayout(new FlowLayout());
 co=new JComboBox();
 co.addItem("Select an Item");
 co.addItem("Archana");
 co.addItem("Supriya");
 co.addItem("Jayashree");
 co.addItem("Shivraj");
 co.addItem("Sandip");
 contentPane.add(co);
 co.addItemListener(this);
 T=new JTextField(10);
 contentPane.add(T);
 T.addActionListener(this);
 B=new JButton("Submit");
 contentPane.add(B);
 B.addActionListener(this);
 }
 public void itemStateChanged(ItemEvent e)
 {
 String str=(String)e.getItem();
 if(str=="Archana")
 T.setText("11-11111111");
 else if(str=="Supriya")
 T.setText("11-22222222");
 else if(str=="Jayashree")

Advanced JAVA Programming 3 - 23 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 T.setText("11-33333333");
 else if(str=="Shivraj")
 T.setText("11-44444444");
 else if(str=="Sandip")
 T.setText("11-55555555");
 else
 {
 if((str=="")||(T.getText()==""))//generating Beep
 System.out.println("\007");
 }
 }
 public void actionPerformed(ActionEvent e)
 {
 String str=(String)T.getText();
 co.setSelectedItem(str);
 if(co.getSelectedItem()=="Select an Item");//no item selected
 System.out.println("\007\007");//generating Beep
 }
}

Output

 Example 3.4.3 Write a program to create product enquiry form using frames.
Solution :

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
public class FrameProg extends JFrame
{

Advanced JAVA Programming 3 - 24 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 public static void main(String[] args)
 {
 new FrameProg();
 }
 FrameProg()
 {
 JFrame f=new JFrame("Enquiry Form");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setVisible(true);
 f.setSize(800,300);
 Container content=f.getContentPane();
 content.setLayout(new FlowLayout(FlowLayout.CENTER));
 content.add(new JLabel("Name:"));
 content.add(new JTextField(10));
 content.add(new JLabel("Address:"));
 content.add(new JTextField(20));
 content.add(new JLabel("Product:"));
 JComboBox co=new JComboBox();
 co.addItem("Mobile Phones");
 co.addItem("Laptops");
 co.addItem("ipods");
 co.addItem("Tablet PC");
 content.add(co);
 JButton b=new JButton("Submit");
 content.add(b);
 }
}

 Example 3.4.4 How will you display an image on the frame in a window using java ?
Solution :

import javax.swing.*;

import java.awt.*;

public class ImgFrameDemo extends JFrame

{

 public void display()

 {

 JFrame frame = new JFrame("Displaying Image On Frame");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(400, 400);

 frame.setResizable(false);

 frame.setLocationRelativeTo(null);

 // Inserts the image icon

Advanced JAVA Programming 3 - 25 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 ImageIcon image = new ImageIcon("img1.jpg");

 JLabel label1 = new JLabel(" ", image, JLabel.CENTER);

 frame.getContentPane().add(label1);

 frame.validate();

 frame.setVisible(true);

 }

 public static void main(String[] args)

 {

 ImgFrameDemo obj = new ImgFrameDemo();

 obj.display();

 }

}

Output

 3.4.11 ScrollPane

 The ScrollPane is a rectangular area in which some component can be placed.

 The component can be viewed with the help of horizontal and vertical scroll bars.

 Using the JScrollPane class the component can be added in the program.

 The JScrollPane class extends the JComponent class.

 There are three constructors that can be used for this component -
JScrollPane(Component component)
JScrollPane(int vscrollbar, int hscrollbar)
JScrollPane(Component component, int vscrollbar, int hscrollbar)

The component represents the reference to the component. The vscrollbar and hscrollbar
are the integer values for the vertical and horizontal scroll bars. These values can be
defined by the constants such as

Advanced JAVA Programming 3 - 26 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Constant Meaning

HORIZONTAL_SCROLLBAR_ALWAYS It always displays the horizontal scroll bar.

HORIZONTAL_SCROLLBAR_NEEDED It displays the horizontal scrollbar if required.

VERTICAL_SCROLLBAR_ALWAYS It always displays the vertical scroll bar.

VERTICAL_SCROLLBAR_NEEDED It displays the vertical scrollbar if required.

 Following is a simple program which illustrates the use of scrollpane.

Step 1 : Create a label.

Step 2 : Create a panel.

Step 3 : Use an image with the help of label.

Step 4 : Add the label on the panel.

Step 5 : Create a content pane.

Step 6 : Create a scrollpane component by passing the image (within a panel) as a
component to it.

Step 7 : Add the the scrollpane component to the content pane component.

Java Program

import java.awt.*;
import javax.swing.*;
/*
<applet code="ScrollPaneDemo" width=150 height=150>
</applet>
*/
public class ScrollPaneDemo extends JApplet
{
 public void init()
 {
 Container contentPane = getContentPane();
 contentPane.setLayout(new BorderLayout());
 JPanel mypanel = new JPanel();
 JLabel L1 = new JLabel();
 ImageIcon i = new ImageIcon("img.jpg");
 L1.setLocation(20, 100);
 L1.setSize(120, 120);
 L1.setIcon(i);
 mypanel.add(L1);

Advanced JAVA Programming 3 - 27 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 int vscrollbar = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;
 int hscrollbar = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;
 JScrollPane jsp = new JScrollPane(mypanel, vscrollbar, hscrollbar);
 contentPane.add(jsp, BorderLayout.CENTER);
}
}

Output

 Example 3.4.5 List does not support scrolling. Why ? How this can be remedied ? Explain with
an example.

Solution : List is a component which simply displays the list of items. But this component
does not support scrolling. The scrolling facility can be added to this component by using
the scroll pane. Following are the steps that can be carried out for that purpose -

Step 1 : Create the content pane.

Step 2 : Create a list of items. (Preferably list of lots of items)

Step 3 : Create a scroll pane component by setting the values to vertical and horizontal
component ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED and
ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;

Step 4 : Then pass the JList component to scroll pane component.

Step 5 : Then add this scroll pane component to content pane.

Following program illustrates this idea -

Java Program

import javax.swing.*;
import java.awt.*;
import javax.swing.tree.*;

Advanced JAVA Programming 3 - 28 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

/*
<applet code="ListDemo" width=150 height=90>
</applet>
*/

public class ListDemo extends JApplet
{
 public void init()
 {
 Container contentPane = getContentPane();

 contentPane.setLayout(new BorderLayout());
 String[] str = { "Windows 98\n", "Windows NT\n", "Windows Vista\n", "Windows
7\n","Fedora\n", "Ubuntu"};
 JList list = new JList(str);

 int vscrollbar = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;
 int hscrollbar = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;

 JScrollPane mypane = new JScrollPane(list, vscrollbar, hscrollbar);
 contentPane.add(mypane, BorderLayout.CENTER);
}
}

Output

 3.4.12 Scrollbar

 The JScrollbar class is used to implement the horizontal and vertical scrollbars. This
class is inherited from JComponent class.

 The commonly used constructors are :
JScrollBar() Creates a vertical scrollbar with the initial values.

JScrollBar(int orientation) Creates a scrollbar with the specified orientation
and the initial values.

JScrollBar(int orientation, int value, int extent,
int min, int max)

Creates a scrollbar with the specified orientation,
value, extent, minimum and maximum.

Advanced JAVA Programming 3 - 29 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Following is a simple java program that displays the scrollbar component.
import javax.swing.*;
class ScrollBarDemo
{
 ScrollBarDemo()
 {
 JFrame fr= new JFrame("Scrollbar Demo");
 JScrollBar sb=new JScrollBar();
 sb.setBounds(50,50,30,200);
 fr.add(sb);
 fr.setSize(500,500);
 fr.setLayout(null);
 fr.setVisible(true);
 }
 public static void main(String args[])
 {
 new ScrollBarDemo();
 }
}

Output

Difference between Scrollbar and ScrollPane :

1) Scrollbar is a component whereas scrollPane is container.
2) Scrollbar cannot handle its own events whereas the ScrollPane can handle its

events.
3) Scollbar can not contain ScrollPane but scrollPane can have scrollbar.

 3.4.13 Menus

 The menu bar is the most standard GUI which is present in almost all the
applications.

Advanced JAVA Programming 3 - 30 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 We can create a menu bar which contains several menus.
 Each menu can have several menu items.
 The separator can also be used to separate out these menus.
 Various methods and APIs that can be used for creating the Menus in Swing are -

JMenuBar

This class creates a menu bar. A menu bar normally contains several menus.

JMenu(String str)

This class creates several menus. The menus contain the menu items. The string str
denotes the names of the menus.

JMenuItem(String str)

The menu items are the parts of menus. The string str denotes the names of the menu
items.

setMnemonic(char ch)

The mnemonic key can be set using this method. The character which is passed to it as
an argument becomes the mnemonic key. Hence using alt + ch you can select that
particular menu.

JSeparator

This is the constructor of the class JSeparator which adds separating line between the
menu items.

setJMenuBar

 This method is used to set menu bar to a specific frame.
 In the following Java program, we have created a frame on which a menu bar is

placed. The menu bar contains three menus - File, Edit and Help. Each of these
menus have their own set of menu items. The separators and mnemonic keys are
also used in this program.

Java Program

import java.awt.*;
import javax.swing.*;
class MenuProg
{
 public static void main(String[] args)
 {
 JMenu menu1=new JMenu("File");Creating Menu
 menu1.setMnemonic('F');
 menu1.add(new JMenuItem("New"));
 menu1.add(new JMenuItem("Open"));
 menu1.add(new JMenuItem("Save"));
 menu1.add(new JMenuItem("Save as..."));

Adding menu items
to menus

Advanced JAVA Programming 3 - 31 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 menu1.add(new JSeparator());
 menu1.add(new JMenuItem("Close"));
 JMenu menu2=new JMenu("Edit");
 menu2.setMnemonic('E');
 menu2.add(new JMenuItem("Undo"));
 menu2.add(new JMenuItem("Redo"));
 menu2.add(new JSeparator());
 menu2.add(new JMenuItem("Cut"));
 menu2.add(new JMenuItem("Copy"));
 menu2.add(new JMenuItem("Paste"));

 JMenu menu3=new JMenu("Help");
 menu3.setMnemonic('H');
 JMenuBar menubar=new JMenuBar();Creating menubar
 menubar.add(menu1);
 menubar.add(menu2);
 menubar.add(menu3);

 JFrame f=new JFrame(); Creating frames
 f.setJMenuBar(menubar); placing menubar on the frame
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setVisible(true);
 f.setSize(200,200);

 }
}

Output

In order to try out the mnemonic keys just press Alt+f key and the File menu gets
selected.

MenubarMenu

MenuItems

Separator

Adding menus to menubar

Advanced JAVA Programming 3 - 32 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 3.4.6 Write a program to create a frame with the following menus, such that the
corresponding geometric object is created when a menu is clicked. i) Circle ii) Rectangle
iii) Line iv) Diagonal for the rectangle.

Solution :
import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
class ShapesMenu extends JFrame implements ActionListener
{
 JMenuBar mb;
 JMenu menu;
 JMenuItem rect,line,oval;
 ShapesMenu()
 {
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 setLayout(new FlowLayout());
 mb=new JMenuBar();

 menu=new JMenu("Shapes");
 mb.add(menu);

 rect=new JMenuItem("Rectangle");
 rect.addActionListener(this);
 menu.add(rect);

 line=new JMenuItem("Line");
 line.addActionListener(this);
 menu.add(line);

 oval=new JMenuItem("Circle");
 oval.addActionListener(this);
 menu.add(oval);

 line=new JMenuItem("Rectangle_Diagonal");
 line.addActionListener(this);
 menu.add(line);

 setJMenuBar(mb);
 }
 public void actionPerformed(ActionEvent ae)
 {
 String str=ae.getActionCommand();
 Graphics g=getGraphics();

Advanced JAVA Programming 3 - 33 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 if(str=="Rectangle")
 g.drawRect(200,200,50,50);
 if(str=="Line")
 g.drawLine(300,100,400,200);
 if(str=="Circle")
 g.drawOval(200,300,100,100);
 if(str=="Rectangle_Diagonal")
 g.drawLine(200,200,250,250);
 }
 public static void main(String args[])
 {
 ShapesMenu f=new ShapesMenu();
 f.setTitle("SHAPES DEMO");
 f.setSize(500,500);
 f.setVisible(true);
 }
}

Output

Advanced JAVA Programming 3 - 34 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 3.4.7 Create a simple menu application that enables a user to select one of the following
items :
Radio 1
Radio 2
Radio 3
Radio 4
Radio 5
Red Dragon Radio
i) From the menu bar of the application ii) From a pop up menu iii) From a toolbar.
Add tooltips to each menu item that indicates some information about the Radio station such
as type of music and its broadcast frequency.

Solution :
import java.awt.event.*;
import java.awt.*;
import javax.swing.*;

public class MenuApplication
{
 public static void main(String args[])
 {
 JFrame f = new JFrame("Simple Menu Application");
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 /* Creating Menu Bar */
 JMenuBar bar = new JMenuBar();
 JMenu menu = new JMenu("Options");
 menu.setMnemonic(KeyEvent.VK_O);
 ButtonGroup group = new ButtonGroup();
 JRadioButtonMenuItem menuItem = new JRadioButtonMenuItem("Radio 1");
 menuItem.setToolTipText("Music Masala 94.5KHz");
 group.add(menuItem);
 menu.add(menuItem);

 menuItem = new JRadioButtonMenuItem("Radio 2");
 menuItem.setToolTipText("Retro Melody 100.1KHz");
 group.add(menuItem);
 menu.add(menuItem);

 menuItem = new JRadioButtonMenuItem("Radio 3");
 menuItem.setToolTipText("Classical Khajana 98.3KHz");
 group.add(menuItem);
 menu.add(menuItem);

Advanced JAVA Programming 3 - 35 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 menuItem = new JRadioButtonMenuItem("Radio 4");
 menuItem.setToolTipText("Music on Demand 91.1KHz");
 group.add(menuItem);
 menu.add(menuItem);

 menuItem = new JRadioButtonMenuItem("Radio 5");
 menuItem.setToolTipText("Disco Station 95.3KHz");
 group.add(menuItem);
 menu.add(menuItem);

 menuItem = new JRadioButtonMenuItem("Red Dragon Radio");
 group.add(menuItem);
 menu.add(menuItem);

 bar.add(menu);
 f.setJMenuBar(bar);

 /* Creating ToolBar */
 JToolBar toolbar = new JToolBar();
 toolbar.setRollover(true);
 JButton button = new JButton("Radio 1");
 toolbar.add(button);
 button = new JButton("Radio 2");
 toolbar.add(button);
 button = new JButton("Radio 3");
 toolbar.add(button);
 button = new JButton("Radio 4");
 toolbar.add(button);
 button = new JButton("Radio 5");
 toolbar.add(button);
 button = new JButton("Red Dragon Radio");
 toolbar.add(button);
 Container contentPane = f.getContentPane();
 contentPane.add(toolbar, BorderLayout.NORTH);

 /* Creating Popup menu*/
 JPopupMenu popup = new JPopupMenu();
 JMenuItem mItem=new JMenuItem("Radio 1");
 popup.add(mItem);
 mItem=new JMenuItem("Radio 2");
 popup.add(mItem);
 mItem=new JMenuItem("Radio 3");
 popup.add(mItem);
 mItem=new JMenuItem("Radio 4");
 popup.add(mItem);
 mItem=new JMenuItem("Radio 5");
 popup.add(mItem);
 mItem=new JMenuItem("Red Dragon Radio");

Advanced JAVA Programming 3 - 36 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 popup.add(mItem);

 f.addMouseListener(new MouseAdapter() {
 @Override
 public void mousePressed(MouseEvent e) {
 showPopup(e);
 }
 @Override
 public void mouseReleased(MouseEvent e) {
 showPopup(e);
 }
 private void showPopup(MouseEvent e) {
 if (e.isPopupTrigger()) {
 popup.show(e.getComponent(),
 e.getX(), e.getY());
 }
 }
 });
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setSize(500, 500);
 f.setVisible(true);
 }
}

Output

Advanced JAVA Programming 3 - 37 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 3.4.14 Dialog Boxes

 The dialog box is useful to display some useful messages to the user. Using Swing
we can create three types of dialog boxes -

1. Simple message dialog box

2. Confirm message dialog box

3. Input dialog box

 These dialog boxes are created using JOptionPane class. This class is present in the
javax.swing.* package. Hence we must import this file at the beginning.

Let us understand these dialog boxes with the help of programming examples -

 Simple message dialog box

 This type of message box simply displays the informative message to the user.

 It has only OK button.

Advanced JAVA Programming 3 - 38 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 It is expected that after reading out the message the user must click the OK button
to return.

 The JOptionPane class provides the method showMessageDialog() in order to
display the simple message box.

 Following is the simple Java program which shows how to create simple message
dialog box -

Java Program[DialogBox1Prog.java]

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.event.*;
public class DialogBox1Prog
implements ActionListener
{
 JFrame f;
 public static void main(String[] args)
 {
 new DialogBox1Prog();
 }
 public DialogBox1Prog()
 {
 f=new JFrame("Dialox Box Demo");
 JButton B=new JButton("Click Me!!");
 Container container=f.getContentPane();
 container.setLayout(new FlowLayout());
 container.add(B);
 B.addActionListener(this);
 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setSize(300,300);
 f.setVisible(true);
 }
 public void actionPerformed(ActionEvent e)
 {
JOptionPane.showMessageDialog(f,"Swing Programming is a real fun!!!","My
Message",JOptionPane.INFORMATION_MESSAGE);
 }
}

Advanced JAVA Programming 3 - 39 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

Program explanation

In above Java program, we have created one frame window, on which one push
button is placed. When we click the button, then the simple message box will be
displayed. This message box has only one OK button.

To display the dialog box we have

JOptionPane.showMessageDialog(f," Swing Programming is a real fun!!!", "My
Message", JOptionPane.INFORMATION_MESSAGE);

 Confirm message dialogbox

 This type of dialog box will display some message to the user and will get the
confirmation from him.

 User can give his confirmation either by clicking OK, CANCEL, YES or NO button.

Parent frame
window

Message to
be
displayed

Title of the
message
window

Message type

Advanced JAVA Programming 3 - 40 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 The confirm message dialog box will display the message either along with the OK
and CANCEL button or with the YES, NO or CANCEL button.

 In the following Java program we have used three types of message boxes - simple
message box, confirm message box with OK and CANCEL and the confirm
message box with YES, NO and CANCEL.

Java Program[DialogBox2Prog.java]

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.event.*;
public class DialogBox2Prog
implements ActionListener
{
 JFrame f;
 public static void main(String[] args)
 {
 new DialogBox2Prog();
 }
 public DialogBox2Prog()
 {
 f=new JFrame("Dialox Box Demo");
 Container container=f.getContentPane();
 container.setLayout(new FlowLayout());
 JButton B=new JButton("Simple Message DialogBox");
 container.add(B);
 B.addActionListener(this);

 B=new JButton("OK and Cancel DialogBox");
 container.add(B);
 B.addActionListener(this);

 B=new JButton("Yes/No/Cancel DialogBox");
 container.add(B);
 B.addActionListener(this);

 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 f.setSize(300,300);
 f.setVisible(true);
 }
 public void actionPerformed(ActionEvent e) //event handler function

On this button click simple message
box will be displayed

On this button click Yes/No/Cancel
dialog box will be displayed

On this button click OK/Cancel dialog
box will be displayed

Advanced JAVA Programming 3 - 41 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 {
 String s=e.getActionCommand(); //getting the string present on the button
 if(s.equals("Simple Message DialogBox"))
 JOptionPane.showMessageDialog(f,"Simple Message");
 else if(s.equals("OK and Cancel DialogBox"))
 {
 if(JOptionPane.showConfirmDialog(f,"This is OK/Cancel Message","Confirm Dialog
 Box",JOptionPane.OK_CANCEL_OPTION)==0)
 JOptionPane.showMessageDialog(f,"You have clicked OK button");
 else
 JOptionPane.showMessageDialog(f,"You have clicked Cancel button");
 }
 else if(s.equals("Yes/No/Cancel DialogBox"))
 {
 if(JOptionPane.showConfirmDialog(f,"This is Yes/No/Cancel Message","Confirm Dialog
 Box",JOptionPane.YES_NO_CANCEL_OPTION)==0)
 {
 JOptionPane.showMessageDialog(f,"You have clicked Yes button");
 }
 else
 {
 JOptionPane.showMessageDialog(f,"You have clicked OK or Cancel button");
 }

 }

 }
}

Output

Advanced JAVA Programming 3 - 42 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Program explanation

For the confirm dialog box, the option type could be OK_CANCEL,
YES_NO_OPTION, OK_OPTION, NO_OPTION which are associated with some constant
values.

In above program, when the user clicks the button for OK and Cancel message then
appropriate message will be displayed. If user clicks the OK button then the message
“You have clicked OK button will be displayed” otherwise the message “You have
clicked Cancel button” will be displayed.

 3.4.15 Tabbed Pane

Tabbed pane is a type of component in which group of folders can be represented
together and particular folder can be selected from the tab.

Each folder has a title and when the user selects the particular folder on the tab then
only it will be displayed. One folder can be displayed at a time.

For displaying the tabbed pane there exists a JTabbedPane class which extends the
JComponent class.

Using the addTab method the folders can be added to the tabbed pane. The syntax for
this method is
void addTab(Strin str,Component comp)

The str represents the string which will be displayed as a title to the tab.

The comp is a reference to the component which should be added to the tabbed pane.

Following program illustrates the use of tabbed pane.

Step 1 : Create an applet.

Step 2 : Create the tabbed pane.

Step 3 : Create a contentpane.

Step 4 : Place the tabbed pane on the content pane.

Step 5 : Define the components of tabbed pane.

Java program

import javax.swing.*;
/*
<applet code="TabbedPaneDemo" width=500 height=400>
 </applet>
*/

public class TabbedPaneDemo extends JApplet

Advanced JAVA Programming 3 - 43 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

{
 public void init()
 {
 JTabbedPane mytpane = new JTabbedPane();
 mytpane.addTab("Laptop", new LaptopPanel());
 mytpane.addTab("OS", new OSPanel());
 mytpane.addTab("Database", new DatabasePanel());
 mytpane.addTab("Languages", new LangPanel());
 getContentPane().add(mytpane);
 }
}
class LaptopPanel extends JPanel
{
 public LaptopPanel()
 {
 JRadioButton jrb1 = new JRadioButton("DELL");
 add(jrb1);
 JRadioButton jrb2 = new JRadioButton("Samsung");
 add(jrb2);
 JRadioButton jrb3 = new JRadioButton("HP");
 add(jrb3);
 JRadioButton jrb4 = new JRadioButton("Acer");
 add(jrb4);
 ButtonGroup bg=new ButtonGroup();
 bg.add(jrb1);
 bg.add(jrb2);
 bg.add(jrb3);
 bg.add(jrb4);
 }
}

class OSPanel extends JPanel
{
 public OSPanel()
 {
 JComboBox jcb = new JComboBox();
 jcb.addItem("Windows XP");
 jcb.addItem("Windows Vista");
 jcb.addItem("Windows 7");
 jcb.addItem("Ubuntu");
 add(jcb);
 }
}
class DatabasePanel extends JPanel

Adding the folders on the
tabbed pane

Languages Component defined

OS Component defined

Database Component defined

Advanced JAVA Programming 3 - 44 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

{
 public DatabasePanel()
 {
 JCheckBox cb1 = new JCheckBox("Oracle");
 add(cb1);
 JCheckBox cb2 = new JCheckBox("MySQL");
 add(cb2);
 JCheckBox cb3 = new JCheckBox("Microsoft Access");
 add(cb3);
 }
}
class LangPanel extends JPanel
{
 public LangPanel()
 {
 JButton b1 = new JButton("JSP");
 add(b1);
 JButton b2 = new JButton("ASP");
 add(b2);
 JButton b3 = new JButton("PHP");
 add(b3);
 }
}

Output

Languages Component defined

Advanced JAVA Programming 3 - 45 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 3.4.16 JTree

Tree is a type of component that gives the hierarchical view of data. User can expand
or shrink the nodes of the tree. In swing the trees are implemented using the JTree class.
This class extends the JComponent.

The most commonly used constructor for this class is -
JTree(TreeNode root)

The root represents the root node of the tree.

Using the DefaultMutableTreeNode, it creates a tree node with no root node, the
child of root node, specified by user object and it allows only children that have to be
specified. It takes boolean types values either 'true' or 'false'. If you will take 'true' that
means children node are allowed.

Step 1 : Make use of applet for implementation of the tree program.

Step 2 : Create a tree with root, child and grand child nodes.

Step 3 : Create a content pane object.

Step 4 : Add the JTree component on the content pane.

Java Program

import javax.swing.*;
import java.awt.*;
import javax.swing.tree.*;
/*
<applet code="TreeDemo" width=300 height=200>
</applet>
*/

public class TreeDemo extends JApplet
{
 public void init()
 {
 Container contentPane=getContentPane();
 contentPane.setLayout(new BorderLayout());

 DefaultMutableTreeNode root = new DefaultMutableTreeNode("Root", true);

 DefaultMutableTreeNode c1 = new DefaultMutableTreeNode("Child 1");
 root.add(c1);

 DefaultMutableTreeNode c2 = new DefaultMutableTreeNode("Child 2");
 root.add(c2);

Advanced JAVA Programming 3 - 46 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 DefaultMutableTreeNode gc1 = new DefaultMutableTreeNode("GrandChild 1");
 DefaultMutableTreeNode gc2 = new DefaultMutableTreeNode("GrandChild 2");
 DefaultMutableTreeNode gc3 = new DefaultMutableTreeNode("GrandChild 3");
 c2.add(gc1);
 c2.add(gc2);
 c2.add(gc3);

 DefaultMutableTreeNode c3 = new DefaultMutableTreeNode("Child 3");
 root.add(c3);

 DefaultMutableTreeNode c4 = new DefaultMutableTreeNode("Child 4");
 root.add(c4);

 DefaultMutableTreeNode c5 = new DefaultMutableTreeNode("Child 5");
 root.add(c5);

 JTree tree = new JTree(root);
 contentPane.add(tree);
 }
}

Following commands can be used to execute the above code.
D:\JavaPrograms>javac TreeDemo.java
D:\JavaPrograms>AppletViewer TreeDemo.java

Output

Advanced JAVA Programming 3 - 47 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 3.4.17 JTable

Table is a component that arranges the data in rows and columns. The JTable class
extends the JComponent class. The constructor used for table component is -
JTable(object[][] tablevalues object [] columnheader)

The tablevalues indicate the data that can be arranged in tabular fashion.

The columnheader denotes the header for each column.

Following is a simple program that shows the use of JTable component.

Java Program

import javax.swing.*;
import java.awt.*;
import javax.swing.tree.*;
/*
<applet code="TableDemo" width=300 height=100>
</applet>
*/

public class TableDemo extends JApplet
{
 public void init()
 {
 Container contentPane = getContentPane();

 contentPane.setLayout(new BorderLayout());

 final String[] th = { "Name", "City", "Salary","Designation" };
 final Object[][] mytable = {
 { "Arun", "Pune", "5000","Accountant"},
 { "Archana", "Mumbai", "7000","Executive"},
 { "Shivani", "Banglore", "10000","Manager"},
 { "Priyanka", "Chennai", "8000","Programmer"},
 { "Monika", "Hyderabad", "10000","Designer"},
 { "Shilpa", "Hyderabad", "12000","Director"},
 { "Anuja", "Delhi", "17000","Director"},
 { "Kumar", "Pune", "10000","Manager"}
 };

 JTable table = new JTable(mytable,th);

 int vscrollbar = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;
 int hscrollbar = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;

Advanced JAVA Programming 3 - 48 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 JScrollPane mypane = new JScrollPane(table, vscrollbar, hscrollbar);
 contentPane.add(mypane, BorderLayout.CENTER);
}
}

Following commands are used to display the output.
D:\JavaPrograms>javac TableDemo.java
D:\JavaPrograms>AppletViewer TableDemo.java

Output

 Example 3.4.8 Write a Java program to display the 3 × 3 magic square using JTable.

Solution :

import javax.swing.*;
import java.awt.*;
import javax.swing.tree.*;
/*
<applet code="TableDemo" width=100 height=100>
</applet>
*/

public class TableDemo extends JApplet
{
 public void init()
 {
 Container contentPane = getContentPane();

 contentPane.setLayout(new BorderLayout());
 final String[] th = { "", "", ""};
 final Object[][] mytable = {
 { "8", "1","6"},
 { "3", "5","7"},
 { "4", "9","2"}

Advanced JAVA Programming 3 - 49 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 };

 JTable table = new JTable(mytable,th);

 int vscrollbar = ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED;
 int hscrollbar = ScrollPaneConstants.HORIZONTAL_SCROLLBAR_AS_NEEDED;

 JScrollPane mypane = new JScrollPane(table, vscrollbar, hscrollbar);
 contentPane.add(mypane, BorderLayout.CENTER);
}
}

Output

 3.5 Java Utilities (java.util Package)

Package java.util contains the collections framework, legacy collection classes, event
model, date and time facilities, internationalisation and miscellaneous utility classes.

Importing java.util package

The import is a java keyword which is used for importing a Java class or entire Java
package. For example import java.util.Calendar; means you are importing a single
calendar class. If you want to import all the classes from any Java package, your import
statement must be like this import java.util.* That means you are importing the entire
java.util package.

 3.6 The Collection Framework

 The standard data structures can be implemented in Java using some library classes
and methods.

 These classes are present in the java.util package.

 The collection framework is comprised of collection classes and collection
interfaces.

Advanced JAVA Programming 3 - 50 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Basically collection is a group of objects which are designed to perform certain task.
These tasks are associated with alteration of data structures.

 The collection classes are the group of classes used to implement the collection
interfaces.

 Various collection classes are

Fig. 3.6.1 Collection class hierarchy

Review Question

1. Write short note on - collection framework.

Advanced JAVA Programming 3 - 51 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 3.7 Collections of Objects and Types

Collection classes provide the implementation of different collection interfaces.

Fig. 3.7.1 shows different collection interfaces.

Fig. 3.7.1 Interfaces in collection framework

The collection interfaces contain several useful methods by which we can modify the
collections. Various methods that are supported by collection are as given below -

Method Description

boolean add(Object obj) Objects are added using this method. This method takes
arguments of type object.

boolean addAll(Collection
collection)

Entire content of one collection can be added to another using
this method.

void clear() In order to clear the collection, this method is used.

boolean contains(Object obj) For checking whether the collection contains specific object or
not this method is used.

boolean containsAll(Collection
collection)

If all the elements of the collection are present in the collection
then this method returns true.

boolean isEmpty() It’s a Boolean method which determines whether collection is

empty or not. If a collection is empty then it return true
otherwise false.

Iterator iterator() Returns iterator to the collection.

boolean remove(Object obj) An object can be removed by this method.

boolean removeAll(Collection
collection)

It helps in removing a group of objects.

int size() It returns the total number of elements in the collection.

Advanced JAVA Programming 3 - 52 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Object[] toArray() Returns an array of elements to the invoking collection. Basically
these array elements are the copies of the collection that calls the
toArray method.

boolean equals(Object obj) For comparing two collections this method is used.

The methods in collection interface throws has two common exceptions -

Unsupported Operation Exception for illegal supporting operation and
ClassCastException when one object is incompatible with other object.

List Interface

The List interface extends the Collection interface. It is basically the sequence of
elements in which the elements can be inserted and accessed by their position in the list.
The duplicate elements are allowed in this interface. Various methods used in the List
interface are enlisted in following table -

Method Description

void add(int i, object obj) This method inserts the object obj at specified location in the
list. This location is denoted by index i.

void add(int i, Collection collection) This method inserts elements of collection collection at
specified location in the list. This location is denoted by
index i.

Object get(int i) To get the object stored at specified location in the list, this
method is used. This location can be obtained with the help
of index i.

Object set(int i,Object obj) The value of the element can be set using this method.

int indexOf(Object obj) If object is an element of the list then its index will be
returned by this method.

int lastindexOf(Object obj) This method returns the index of the last object present in
the list.

ListIterator listIterator() It returns an iterator of the element to the start of the list.

ListIterator listIterator(int i) It returns an iterator to the list which begins at specified
index.

Advanced JAVA Programming 3 - 53 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Object remove(int i) This method is for removing the element present at the
specific position.

List subList(int starting,int end) It returns the sublist specified within the starting index and
ending index.

Set Interface

The set interface is used to define the set of elements. It extends the collection interface.
This interface defined unique elements. Hence if any duplicate elements is tried to insert
in the set then the add() method returns false.

SortedSet Interface

This interface is inherited from the set interface and allows the elements to be arranged
in ascending order. The methods defined in this interface normally throw the exception
such as NoSuchElementException, NullPointerException and ClassCastException.

Various methods used by this interface are as given below -

Method Description

Comparator comparator() This method returns the comparator object. If the elements in

the SortedSet are present in ascending order then this method

returns null.

Object first() It returns the first element present in the SortedSet.

Object last() It returns the last element present in the SoretedSet.

SortedSet headset(Object target) This method returns all those elements which are less than the

target element.

SortedSet subset(Object

source,Object target)

This method returns all those elements of SortedSet which are

present between source and target.

SortedSet headset(Object target) This method returns all those elements which are greater than

or equal to the target element.

Map Interface

This interface maps a unique key element to the value. Thus map interface represents a
key-value pair.

SortedMap Interface

The SortedMap is inherited from the Map interface. In this interface the elements are
stored in ascending order. This sorted order is based on the key.

Advanced JAVA Programming 3 - 54 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Review Question

1. Explain the collection interface with example.

 3.8 List Interface

 Lists interface extends the collection interface.
 It is basically the sequence of elements in which the elements can be inserted and

accessed by their position in the list. The duplicate elements are allowed in this
interface.

 There are two concrete classes for defining the List interface.

 1. ArrayList 2. LinkedList

 3.8.1 ArrayList

 The ArrayList class implements the List interface. It is used to implement the
dynamic array.

 The dynamic array means the size of array can be created as per requirement.
Hence ArrayList is a variable length array of object references.

 Initially ArrayList is created with some initial size and then as per requirement we
can extend the size of array. When the objects are removed then the size of array
can be reduced.

 The syntax of using ArrayList is as given below -
ArrayList() Creates an empty list

ArrayList(Collection collection) Creates a list in which the collection elements are added

ArrayList(int c) Creates a list with specified capacity c, the capacity represents the size of

the underlying array

Let us see simple Java program which demonstrates the ArrayList

Java Program [ArrayListProg.Java]

/***
Program uses the ArrayList collection class to
 implement ArrayList data structure
**/
import java.util.*;
class ArrayListProg
{
 public static void main(String[] args)
 {
 System.out.println("\n\t\t Program for Implementing Array List");

Advanced JAVA Programming 3 - 55 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 ArrayList obj=new ArrayList(); //creation of ArrayList
 System.out.println("\n Inserting some elements in the array");
 obj.add(10);
 obj.add(20);
 obj.add(30);
 obj.add(40);
 obj.add(50);
 System.out.println("The array elements are... "+obj);
 System.out.println("\n Inserting some elements in the array in between");
 obj.add(4,45); //inserting after element 40
 System.out.println("The array elements are... "+obj);
 System.out.println("\n Removing some elements from the array");
 obj.remove(1); //array index is passed to remove method
 System.out.println("The array elements are... "+obj);
 System.out.println("The array size is... "+obj.size());
}
}

Output

 Program for Implementing Array List

Inserting some elements in the array
The array elements are... [10, 20, 30, 40, 50]

Inserting some elements in the array in between
The array elements are... [10, 20, 30, 40, 45, 50]

Removing some elements from the array
The array elements are... [10, 30, 40, 45, 50]
The array size is... 5

Program explanation

In above program we have created an array list of integer numbers we can also pass
some character elements to the array list. While removing the element from the list we
should pass the index position of the element. Note that the elements are placed from 0th
index in the ArrayList. The above array is a dynamic array. As we insert the elements it
grows and as we remove the elements it gets shrunk.

 Example 3.8.1 Write a program which stores the list of strings in an ArrayList and then
displays the contents of the list.

Solution :

import java.util.*;
class ArrayListProg
{

Advanced JAVA Programming 3 - 56 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 public static void main(String[] args)
 {
 System.out.println("\n\t\t Program for Implementing Array List for List of Strings");
 ArrayList obj=new ArrayList(); //creation of ArrayList
 System.out.println("\n Inserting some elements in the array");
 obj.add("AAA");
 obj.add("BBB");
 obj.add("CCC");
 obj.add("DDD");
 obj.add("EEE");
 System.out.println("The array elements are... "+obj);
 System.out.println("The array size is... "+obj.size());
 }
}

Output

 Program for Implementing Array List for List of Strings
 Inserting some elements in the array
The array elements are... [AAA, BBB, CCC, DDD, EEE]
The array size is... 5

 3.8.2 LinkedList

 Linked List is a collection of nodes in which every node contains two fields Data
and Next pointer fields.

 The link list can be graphically represented as follows -

Fig. 3.8.1 Linked list

 The java.util package provides the collection class LinkedList in order to implement
the List interface.

 The syntax of using this class is
Linked List() creates an empty linked list

Linked List(Collection collection) creates a linked list having the elements of collection

Programming example :

Following program makes use of various methods such as add(), remove(), addFirst(),
addLast(), removeFirst(), removeLast() for manipulating the contents of linked list.

Advanced JAVA Programming 3 - 57 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

import java.io.*;
import java.util.*;
class LinkedListProg
{
 public static void main(String[] args)throws IOException
 {
 char ans='y',ch='y';
 int choice,val,position;
 String str;
 LinkedList obj=new LinkedList();
 Scanner s=new Scanner(System.in);
 do
 {
 System.out.println("\n\t\t Program for Implementing Linked List");
 System.out.print("\n1.Create\n2.Display \n3.Insert First\n4. Insert Last");
 System.out.print("\n5.Delete First\n6.Delete Last");
 System.out.print("\n7.Insert At any Position");
 System.out.println("\n8.Delete From any Position");
 System.out.println("Enter Your choice");
 choice=s.nextInt();
 switch(choice)
 {
 case 1:
 do
 {
 System.out.println("\n Enter the element to be inserted in the list");
 val=s.nextInt();
 obj.add(val);
 System.out.println(" Do u want to insert more elements?");
 str =s.next();
 ans=str.charAt(0);

 }while(ans=='y');
 break;
 case 2:
 System.out.println("\t The List elements are... "+obj);
 System.out.println("\t The size of linked list is... "+obj.size());
 break;
 case 3: System.out.println("\n Enter the element to be inserted in the list");
 val=s.nextInt();
 obj.addFirst(val);
 System.out.println("\n The element inserted!!!");
 break;
 case 4: System.out.println("\n Enter the element to be inserted in the list");

Advanced JAVA Programming 3 - 58 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 val=s.nextInt();
 obj.addLast(val);
 System.out.println("\n The element inserted!!!");
 break;
 case 5: obj.removeFirst();
 System.out.println("\n The element deleted!!!");
 break;
 case 6: obj.removeLast();
 System.out.println("\n The element deleted!!!");
 break;
 case 7:System.out.println("\n Enter the element to be inserted in the list");
 val=s.nextInt();
 System.out.println("\n Enter the position at which the element is to be inserted");
 position=s.nextInt();
 obj.add(position,val);
 System.out.println("\n The element inserted!!!");
 break;
 case 8: System.out.println("\n Enter the position of element to be deleted");
 position=s.nextInt();
 obj.remove(position);
 System.out.println("\n The element deleted!!!");
 break;
 }
 System.out.println("\n Do u want to go to main menu?");
 str=s.next();
 ch=str.charAt(0);
 }while(ch=='y');
 }
}

Output

 Program for Implementing Linked List
1. Create
2. Display
3. Insert First
4. Insert Last
5. Delete First
6. Delete Last
7. Insert At any Position
8. Delete From any Position
Enter your choice
1
 Enter the element to be inserted in the list
10
 Do u want to insert more elements?

Advanced JAVA Programming 3 - 59 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

y
 Enter the element to be inserted in the list
20
 Do u want to insert more elements?
y
 Enter the element to be inserted in the list
30
 Do u want to insert more elements?
y
 Enter the element to be inserted in the list
40
 Do u want to insert more elements?
n
 Do u want to go to main menu?
y
 Program for Implementing Linked List
1.Create
2.Display
3.Insert First
4. Insert Last
5.Delete First
6.Delete Last
7.Insert At any Position
8.Delete From any Position
Enter Your choice
2
 The List elements are... [10, 20, 30, 40]
 The size of linked list is... 4
 Do u want to go to main menu?
y
 Program for Implementing Linked List
1.Create
2.Display
3.Insert First
4. Insert Last
5.Delete First
6.Delete Last
7.Insert At any Position
8.Delete From any Position
Enter Your choice
3
 Enter the element to be inserted in the list
9
 The element inserted!!!

Advanced JAVA Programming 3 - 60 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Do u want to go to main menu?
y
 Program for Implementing Linked List
1.Create
2.Display
3.Insert First
4. Insert Last
5.Delete First
6.Delete Last
7.Insert At any Position
8.Delete From any Position
Enter Your choice
2
 The List elements are... [9, 10, 20, 30, 40]
 The size of linked list is... 5
 Do u want to go to main menu ?

Difference between ArrayList and LinkedList

Sr.
No.

ArrayList LinkedList

1. ArrayList internally uses dynamic array to

store the elements.

LinkedList internally uses doubly linked list to

store the elements.

2. It internally uses array. If any element is

removed from the array, all the bits are

shifted in memory.

It uses doubly linked list so no bit shifting is

required in memory.

3. Manipulation with ArrayList is slow. Manipulation with LinkedList is faster than

ArrayList.

4. ArrayList class can act as a list only

because it implements List only.

LinkedList class can act as a list and queue both

because it implements List and Deque interfaces.

5. ArrayList is better for storing and accessing

data.

LinkedList is better for manipulating data.

Review Question

1. What is the difference between ArrayList and LinkedList ?

Advanced JAVA Programming 3 - 61 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 3.9 Vector

Vector is similar to the Array List class which implements the dynamic array. It
implements the list interface. This class contains various additional methods which are
enlisted below -

Method Description

void addElement(object) For adding some element in the vector this method is
used.

void insertElementAt(object obj,int pos) For inserting the element in the vector specified by its
position.

boolean removeElement(object ele) This method removes the specified element.

void removeAllElements() This method is for removing all the elements from the
vector.

void removeElementAt(int pos) The element specified by its position gets deleted from
the vector.

int capacity() It returns the capacity of the vector.

int size() It returns the total number of elements present in the
vector.

boolean isEmpty() It returns true if the vector is empty.

object firstElement() Returns the first element of the vector.

int indexOf(object ele) It returns the index of the corresponding element in
the vector.

void setSize(int size) This method is for setting the size of the vector.

Following program illustrates the implementation of vector class.

Java Program [VectorProg.Java]

/**
Program for implementing vector class
**/
import java.io.*;
import java.util.*;
class VectorProg
{
 public static void main(String[] args)throws IOException
 {

Advanced JAVA Programming 3 - 62 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Vector obj=new Vector(3);
 int ival;
 double dval;
 char ans='y';
 System.out.println("The capacity of vector is "+obj.capacity());
 System.out.println("The total number of elements are "+obj.size());
 System.out.println("\t Inserting the integers");
 do
 {
 System.out.println("\n Enter some integer value");
 ival=getInt();
 obj.addElement(ival);
 System.out.println("\n Do u want to enter more?");
 ans=getChar();
 }while(ans=='y');
 System.out.println("The elements in the vector are "+obj);
 System.out.println("\t Inserting the double values");
 do
 {
 System.out.println("\n Enter some double value");
 dval=getDouble();
 obj.addElement(dval);
 System.out.println("\n Do u want to enter more?");
 ans=getChar();
 }while(ans=='y');
 System.out.println("The elements in the vector are "+obj);
 System.out.println("\t The size of vector is "+obj.size());
 System.out.println("\t The first element of the vector is "+(Integer)obj.firstElement());
 System.out.println("\t The last element of the vector is "+(Double)obj.lastElement());
 System.out.println("Removing 2 the elements");
 obj.remove(0);
 obj.remove(2);
 System.out.println("Now The elements in the vector are "+obj);

 }
//
//Following functions are used to handle the inputs entered
//by the user using keyboard
///
public static String getString() throws IOException
 {
 InputStreamReader input = new InputStreamReader(System.in);
 BufferedReader b = new BufferedReader(input);
 String str = b.readLine();//reading the string from console

Advanced JAVA Programming 3 - 63 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 return str;
 }

public static char getChar() throws IOException
 {
 String str = getString();
 return str.charAt(0);//reading first char of console string
 }
public static int getInt() throws IOException
 {
 String str = getString();
 return Integer.parseInt(str);//converting console string to numeric value
 }
public static double getDouble() throws IOException
 {
 String str = getString();
 return Double.parseDouble(str);//converting console string to numeric value
 }
}

Output

The capacity of vector is 3
The total number of elements are 0
 Inserting the integers

 Enter some integer value
11

 Do u want to enter more?
y

 Enter some integer value
22

 Do u want to enter more?
y

 Enter some integer value
33

 Do u want to enter more?
y

 Enter some integer value
44

Advanced JAVA Programming 3 - 64 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Do u want to enter more?
n
The elements in the vector are [11, 22, 33, 44]
 Inserting the double values

 Enter some double value
1.1

 Do u want to enter more?
y

 Enter some double value
2.22

 Do u want to enter more?
y

 Enter some double value
3.333

 Do u want to enter more?
n
The elements in the vector are [11, 22, 33, 44, 1.1, 2.22, 3.333]
 The size of vector is 7
 The first element of the vector is 11
 The last element of the vector is 3.333
Removing 2 the elements
Now The elements in the vector are [22, 33, 1.1, 2.22, 3.333]

 3.10 Set Interface

 The set interface is used to define the set of elements.

 It extends the collection interface.

 This interface defined unique elements. Hence if any duplicate elements is tried to
insert in the set then the add() method returns false.

 Some commonly used functionalities in Set interface are -

Method Description

add() Adds an object to the collection.

clear() Removes all objects from the collection.

contains() Returns true if a specified object is an element within the collection.

isEmpty() Returns true if the collection has no elements.

Advanced JAVA Programming 3 - 65 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

iterator() Returns an Iterator object for the collection, which may be used to retrieve an
object.

remove() Removes a specified object from the collection.

size() Returns the number of elements in the collection.

There are two commonly used ways of implementing set interface.

 3.10.1 HashSet

 HashSet is a collection class that implements the set interface.

 It creates the hash table.

 The hash table is a data structure in which the data is stored using hashing function.
Hence the elements get stored in the hash table based on the hash key returned by
hash function.

 The syntax of using HashSet class is -
HashSet()
HashSet(Collection collection)
HashSet(int c)
HashSet(int c,float fillRatio)

 The fillRatio ranges from 0.0 to 1.0. This parameter determines how full the Hash
set can be before getting resized.

 Various methods supported by the Set class are supported by the HashSet class.
Following program implements the hash table -

Java Program[HashSetProg.java]

import java.io.*;
import java.util.*;
class HashSetProg
{
 public static void main(String[] args)throws IOException
 {
 char ans='y';
 int val;
 System.out.println("\n\t\t Program to create Hash Set");
 HashSet obj=new HashSet();
 Scanner s=new Scanner(System.in);
 System.out.println("\n Creation of hash set");
 do
 {

 System.out.println(" Enter the element ");

Advanced JAVA Programming 3 - 66 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 val=s.nextInt();
 obj.add(val);
 System.out.println("\n Do u want to enter more elements?");
 String str=s.next();
 ans=str.charAt(0);
 }while(ans=='y');
 System.out.println("The elements are ..."+obj);
 }
}

Output

 Program to create Hash Set
 Creation of hash set
 Enter the element
10
 Do u want to enter more elements?
y
 Enter the element
20
 Do u want to enter more elements?
y
 Enter the element
30
 Do u want to enter more elements?
y
 Enter the element
40
 Do u want to enter more elements?
y
 Enter the element
50
 Do u want to enter more elements?
n
The elements are ...[50, 20, 40, 10, 30]

 3.10.2 TreeSet

 The TreeSet class implements the Set collection class.

 This class is basically for creating the Tree data structure.

 The binary tree gets created and when we try to display the tree then we get the
nodes arranged in sorted manner.

 The following program makes use of TreeSet collection class.

Advanced JAVA Programming 3 - 67 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fig. 3.10.1 Binary tree

 We will create following tree in the program -
Java Program[TreeSetProg.java]

import java.io.*;
import java.util.*;
class TreeSetProg
{
 public static void main(String[] args)throws IOException
 {
 char ans='y';
 int val;
 System.out.println("\n\t\t Program to create Tree data structure");
 TreeSet obj=new TreeSet();
 Scanner s=new Scanner(System.in);
 System.out.println("\n Creation of Tree");
 do
 {
 System.out.println(" Enter the element ");
 val=s.nextInt();
 obj.add(val);
 System.out.println("\n Do u want to enter more elements?");
 String str=s.next();
 ans=str.charAt(0);
 }while(ans=='y');
 System.out.println("The tree is... "+obj);
 }
}

Output

 Program to create Tree data structure
 Creation of Tree
 Enter the element
10
 Do u want to enter more elements?
y
 Enter the element
8
 Do u want to enter more elements?
y

Advanced JAVA Programming 3 - 68 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Enter the element
9
 Do u want to enter more elements?
y
 Enter the element
12
 Do u want to enter more elements?
y
 Enter the element
11
 Do u want to enter more elements?
y
 Enter the element
13
 Do u want to enter more elements?
n
The tree is... [8, 9, 10, 11, 12, 13]

 3.11 Map Interface

Map is a kind of data structure which associates the keys to the values. If there is a
unique value present for each unique key then the mapping is called one to one
mapping.

If for a unique key there are multiple values associated with it then it is called many to
one mapping.

 There is a difference between Maps and the Sets. The maps contain keys and values
whereas the sets contain only values.

 There are three classes which implement maps - Hashtable, HashMap and TreeMap.

 3.11.1 Hashtable

The instance of Hashtable is created using which the methods keys() and elements()
are invoked in order to get the keys and corresponding values. Then using Enumerator
we can access every key and corresponding value of the Map.

Java Program[HashtableProg.java]

/**
Program to display all the keys and corresponding values of the map
using Hashtable
**/
import java.util.*;
public class HashtableProg
{

Advanced JAVA Programming 3 - 69 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 public static void main(String[] args)
 {
 Hashtable h=new Hashtable();
 h.put("Accounts","Priyanka");
 h.put("Proof","Lekhana");
 h.put("Graphics","Nilesh");
 h.put("DTP","Archana");
 System.out.println("\n Displaying the Keys...");
 Enumeration E=h.keys();
 while(E.hasMoreElements())
 System.out.println(" "+E.nextElement());

 System.out.println("\n Displaying the values...");
 E=h.elements();
 while(E.hasMoreElements())
 System.out.println(" "+E.nextElement());

 }
}

Output

 Displaying the Keys...
 Proof
 DTP
 Graphics
 Accounts

 Displaying the values...
 Lekhana
 Archana
 Nilesh
 Priyanka

 3.11.2 HashMap

The instance of HashMap is created using which the methods keySet() and values()
are invoked in order to get the keys and corresponding values. Then using iterator we can
access every key and corresponding value of the Map.

Java Program[HashMapProg.java]

/**
Program to display all the keys and corresponding values of the map
using HashMap
**/
import java.util.*;

Advanced JAVA Programming 3 - 70 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

public class HashMapProg
{
 public static void main(String[] args)
 {
 HashMap h=new HashMap();
 h.put("Accounts","Priyanka");
 h.put("Proof","Lekhana");
 h.put("Graphics","Nilesh");
 h.put("DTP","Archana");
 System.out.println("\n Displaying the Keys...");
 Collection c=h.keySet();
 Iterator i=c.iterator();
 while(i.hasNext())
 System.out.println(" "+i.next());
 System.out.println("\n Displaying the values...");
 c=h.values();
 i=c.iterator();
 while(i.hasNext())
 System.out.println(" "+i.next());
 }
}

Output

 Displaying the Keys...
 Accounts
 Graphics
 Proof
 DTP

 Displaying the values...
 Priyanka
 Nilesh
 Lekhana
 Archana

 3.11.3 TreeMap

Displaying the map using TreeMap is similar to the HashMap. We use the TreeMap
class instead of the HashMap class.

Java Program[TreeMap.java]

/**
Program to display all the keys and corresponding values of the map
using TreeMap
***/

Advanced JAVA Programming 3 - 71 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

import java.util.*;
public class TreeMapProg
{
 public static void main(String[] args)
 {
 TreeMap t=new TreeMap();
 t.put("Accounts","Priyanka");
 t.put("Proof","Lekhana");
 t.put("Graphics","Nilesh");
 t.put("DTP","Archana");
 System.out.println("\n Displaying the Keys...");
 Collection c=t.keySet();
 Iterator i=c.iterator();
 while(i.hasNext())
 System.out.println(" "+i.next());
 System.out.println("\n Displaying the values...");
 c=t.values();
 i=c.iterator();
 while(i.hasNext())
 System.out.println(" "+i.next());

 }
}

Output

 Displaying the Keys...
 Accounts
 Graphics
 Proof
 DTP

 Displaying the values...
 Priyanka
 Nilesh
 Lekhana
 Archana

 3.12 Multiple Choice Questions

Q.1 Pluggable look and feel and lightweight components are the features supported
by _______.

 a swing b AWT

 c core Java d none of these

Advanced JAVA Programming 3 - 72 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.2 Swing is based on _____ architecture.

 a client server b model view controller

 c layered d none of these

Q.3 Swing is not a part of JFC (Java Foundation Classes) that is used to create GUI
application.

 a True b False

Q.4 The Java Foundation Classes (JFC) is a set of GUI components which simplify the
development of desktop applications.

 a True

 b False

Q.5 Following letter used as a prefix to swing component ______.

 a A b S

 c G d J

Q.6 _____ is one of the features of object oriented programming that allows the
creation of hierarchical classifications.

 a Polymorphism b Class

 c Inheritance d Object

Q.7 In Swing JButton class is derived from ________.

 a AbstractButton b JToggleButton

 c JComponent d none of these

Q.8 The JTextComponent derives two components JTextField and _______.

 a JComboBox

 b JTextArea

 c JSlider

 d all of the above

Q.9 In Swing class hierarchy the class present at the root is ____.

 a component b window

 c container d object

Q.10 ________ pane can be used to add component to container.

 a Glass b Content

 c Container d All of above

Advanced JAVA Programming 3 - 73 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.11 Select the correct source code using swing for generating following output.

 a
 public class AppletDemo extends JApplet
 {
 public void paint(Graphics g)
 {

 g.msg("WELCOME TO SWING PROGRAM",20,40);
 }
 }

 b

 public class AppletDemo extends JApplet
 {
 public void paint(Graphics g)
 {
 g.drawString("WELCOME TO SWING PROGRAM",20,40);
 }
 }

 c

 public class AppletDemo
 {
 public void paint(Graphics g)
 {

 g.drawString("WELCOME TO SWING PROGRAM",20,40);
 }
 }

Advanced JAVA Programming 3 - 74 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 d
 public class AppletDemo extends JApplet
 {
 public void paint(Graphics g)
 {

 g.display("WELCOME TO SWING PROGRAM",20,40);
 }
 }

Q.12 The components used to display following image are _______.

 a two circle, two arcs

 b three circle, one arc and one rectangle

 c four circles

 d three circles and one arc

Q.13 To represent Icon file in swing label we use _______.

 a setimg

 b setIcon

 c serLabelIcon

 d none of this

Q.14 Which of the following component allows multiple selection ?

 a JList

 b JComboBox

 c JLAbel

 d All of the above

Advanced JAVA Programming 3 - 75 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.15

To generate above output we need ______.

 a List, choiceButton,ImageIcon

 b ComboBox, Image Icon,Label

 c List and Image Icon

 d ComboBox and Image Icone

Q.16 To generate following output the components that are used are _______.

 a Checkbox, Textbox

 b Radiobutton, Textbox

 c Checkbox,button

 d List, Textbox

Q.17 The subclass of JToggleButton is ________.

 a JButton b JCheckBox

 c JRadioButton d both b and c

Advanced JAVA Programming 3 - 76 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.18 The Swing Component classes that are used in Encapsulates a mutually exclusive
set of buttons ?

 a AbstractButton b ButtonGroup

 c JButton d ImageIcon

Q.19 Select the correct output generated by following code.
 import java.awt.*;
 import java.applet.*;
 /*<applet code=Test.class height=200 width=200>
 </applet>*/
 public class Test extends Applet
 {
 public void init()
 {
 List l= new List(2,true);
 l.add("Java");
 l.add("C++");
 l.add("Python");
 add(l);
 }
 }

 a

 b

Advanced JAVA Programming 3 - 77 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 c

 d

Q.20 Which method of the component class is used to set the position and size of a

component ?

 a setPostion b setBounds

 c setSize d none of these

Q.21 Select the correct option.

 I. Canvas is a component.

 II. ScrollPane is a container.

 a I is True and II is False b I is False and II is True

 c I and II both are False d I and II both are true

Q.22 The difference between Scrollbar and Scrollpane is _________.

 a Scrollbar is component and Scrollpane is container

 b Scrollbar is container and Scrollpane is component

 c Scrollbar and Scrollpane both are components and not containers

 d Scrollbar and Scrollpane both are container and not components

Q.23 Frame class Extends Window.

 a True b False

Advanced JAVA Programming 3 - 78 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.24 Which is the container class ?

 a Window b Frame

 c Dialog d All of the above

Q.25 Following is uneditable control.

 a Button b Textfield

 c Label d List

Q.26 Debug the following program

import javax.swing.*;
import java.awt.*;
import javax.swing.tree.*;
/*
<applet code="TableDemo" width=300 height=100>
</applet>
*/
public class TableDemo extends JApplet
{
 public void init()
 {
 Container contentPane = getContentPane();
 contentPane.setLayout(new BorderLayout());
final String[] th = { "Name", "City", "Salary","Designation" };
final Object[][] mytable = {
 { "Arun", "Pune", "5000","Accountant"},
 { "Archana", "Mumbai", "7000","Executive"},
 { "Shivani", "Banglore", "10000","Manager"},
 { "Priyanka", "Chennai", "8000","Programmer"},
 { "Monika", "Hyderabad", "10000","Designer"},
 { "Shilpa", "Hyderabad", "12000","Director"},
 { "Anuja", "Delhi", "17000","Director"},
 { "Kumar", "Pune", "10000","Manager"}
 };

 JTable table = new JTable(mytable);

 int vscrollbar = ScrollPaneConstants.
VERTICAL_SCROLLBAR_AS_NEEDED;
 int hscrollbar = ScrollPaneConstants.
HORIZONTAL_SCROLLBAR_AS_NEEDED;
JScrollPane mypane = new JScrollPane(table, vscrollbar, hscrollbar);
 contentPane.add(mypane, BorderLayout.CENTER);
}
}

Advanced JAVA Programming 3 - 79 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 a Error in statement in which JTable is created.

 b Error in statement in which JScrollPane is created.

 c Error in statement in which applet tag is declared.

 d None of these

Q.27 JPanel and Applet use ______ as their default layout.

 a FlowLayout b GridLayout

 c BorderLayout d GridBagLayout

Q.28 Which components are used to generate following output ?

 a Panel, TabbedPane, Radio button b TabbedPane, List

 c TabbedPane,Panel d Label, TabbedPane, Checkbox

Q.29 MVC stands for _________.

 a Model Version Control b Model View Controller

 c Mini View Controller d Major View Controller

Q.30 MVC architecture is used by swing.

 a True b False

Q.31 In swing ___ gives the visual representation of the component.

 a model b view

 c controller d none of these

Q.32 In swing the event handling task is carried out by ____.

 a model b view

 c controller d none of these

Advanced JAVA Programming 3 - 80 GUI Programming

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.33 _____ represents enterprise data and the business rules that gives access to
enterprise data.

 a Model

 b View

 c Controller

 d None of these

Answer Keys for Multiple Choice Questions :

Q.1 a Q.2 b Q.3 b Q.4 a

Q.5 d Q.6 c Q.7 a Q.8 b

Q.9 d Q.10 b Q.11 b Q.12 d

Q.13 b Q.14 a Q.15 b Q.16 a

Q.17 d Q.18 b Q.19 c Q.20 b

Q.21 d Q.22 a Q.23 a Q.24 d

Q.25 c Q.26 a Q.27 a Q.28 a

Q.29 b Q.30 a Q.31 b Q.32 c

Q.33 a

Explanations :

Q.19 : In above code we have pass 2 as a first parameter to the constructor list. Hence
first two items of the list will be displayed. The second parameter to list is true that
means this list is a scrollable. Hence the correct option is c.

Q.21 : Canvas is a rectangular area where the application can draw or trap input
events. ScrollPane implements horizontal and vertical scrolling.

Q.26 : While creating the JTable we need to pass both table data and header data. The
correct statement is
JTable table = new JTable(mytable,th);

(4 - 1)

UNIT IV

4 Database Programming
using JDBC

Syllabus
The Concept of JDBC, JDBC Driver Types & Architecture, JDBC Packages, A Brief Overview of the
JDBC process, Database Connection, Connecting to non-conventional Databases Java Data Based
Client / server, Basic JDBC program Concept, Statement, Result Set, Prepared Statement, Callable
Statement, Executing SQL commands, Executing queries.

Contents

4.1 The Concept of JDBC

4.2 Types of JDBC Drivers

4.3 JDBC Architecture

4.4 JDBC Packages

4.5 A Brief Overview of the JDBC Process

4.6 Executing SQL Commands

4.7 Database Connection

4.8 Basic JDBC Program Concept

4.9 Executing Queries

 4.10 Statement

 4.11 Result Set

 4.12 Multiple Choice Questions

Advanced JAVA Programming 4 - 2 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 4.1 The Concept of JDBC

 ODBC stands for Open Database Connectivity. It is basically API i.e. Application
Programming Interface.

 Using ODBC driver interface created by Microsoft, an application can access the
data present in Database Management System (DBMS).

 For accessing the data from DBMS, we normally make use of Structured Query
Language (SQL) statements which is popularly known as SQL Queries.

 JDBC stands for Java DataBase Connectivity. JDBC is nothing but an API
(i.e. Application Programming Interface).

 It consists of various classes, interfaces, exceptions using which Java application can
send SQL statements to a database. The SQL is a Structured Query Language used
for accessing the database.

 JDBC is useful for both application developers and JDBC driver vendors.

 The JDBC specification is prepared by Sun Microsystems. Any third party vendor
can design their own JDBC drivers using this specification. These JDBC drivers are
then used by the application developers for getting connected to the database.

 JDBC is specially used for having connectivity with the RDBMS packages (such as
Oracle or MYSQL) using corresponding JDBC driver.

Review Question

1. What is JDBC - ODBC ?

 4.2 Types of JDBC Drivers

 There are four types of JDBC drivers and those are -

1. Type 1 : JDBC-ODBCBridge

2. Type 2 : Native-API/Partly Java Driver

3. Type 3 : All JAVA/ Net Protocol driver for accessing middleware server.

4. Type 4 : All JAVA/ Native-Protocol Pure driver

 Let us discuss them in detail -

Type 1 : JDBC-ODBCBridge

This driver translates all the JDBC calls into ODBC (Open Database Connectivity) calls
and send them to ODBC driver. Thus JDBC access is via ODBC driver. The ODBC is a
generic API. In this scenario the client database code must be present on the client
machine.

Advanced JAVA Programming 4 - 3 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fig. 4.2.1 JDBC-ODBC bridge

 Merit

1. Using the JDBC-ODBC bridge access to any database is possible.

 Demerits

1. This is slowest driver because the calls are sent to ODBC driver and then to the
native database connectivity interface.

2. This type of driver is not suitable for large scale applications.

3. For using this type of driver the native database must be present on the client
machine and the ODBC driver must be installed on the client’s machine.

Type 2 : Native-API/Partly Java Driver

This driver translates all the JDBC calls into database-specific calls. This driver works
specifically for particular database. For example MYSQL will have native MYSQL API.
This type of driver directly communicates with the database server. Hence some binary
code must be present on the client machine.

Fig. 4.2.2 Type - 2 driver

Advanced JAVA Programming 4 - 4 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Merit

1. It gives better performance as comparison with type -1 driver because the JDBC
call is directly converted to database specific call.

 Demerits

1. The library of required databases must be loaded on the client machine.

2. This type of driver is not useful for the internet.

3. If some modifications in made in the database then the native API must also be
modified because it is specific to a database.

Type 3 : All JAVA/ Net Protocol driver for accessing middleware server

 In this type of driver all the JDBC calls are passed through the network to the
middle-ware server. The middleware server then translates the request to the
database-specific native-connectivity interface and then the request is sent to the
database server.

 This driver is a server-based driver. This is also known as a pure Java driver.

Fig. 4.2.3 Type - 3 driver

 Merits

1. As it is server-based driver there is no need to keep library of required databases
on the client machine.

2. This driver is fully written in JAVA (hence is the name all Java) and hence it is
portable and can be used on internet.

3. The performance of this driver can be optimized.

Advanced JAVA Programming 4 - 5 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

4. This driver supports many advanced features such as load balancing, caching
and logging.

5. For this driver it is possible to access multiple databases using one driver.

 Demerits

1. The middleware server application needs to be installed and maintained.

2. The record set has to traverse through the backend server.

Type 4 : All JAVA / Native-Protocol Pure driver

This type of driver converts the JDBC calls to network protocol used by the database
directory so that the client application can directly communicate to the database server.
This driver is also completely implemented in Java and hence it is referred as Pure Java
driver.

 Merits

1. As this driver is completely written in Java, it is platform independent and
can be used on Internet.

2. There is no translation layer in between such as to ODBC or to native API. Neither
there is a need to send the call to middle ware server. Hence the performance of
this type of driver is typically good.

3. There is no need to install specific software on the client machine.

4. These drivers can be downloaded dynamically.

Fig. 4.2.4 Type - 4 driver

 Demerit

1. When the type 4 driver is used then for each database a specific driver is needed.

Review Question

 1. Explain driver types of JDBC.

Advanced JAVA Programming 4 - 6 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 4.3 JDBC Architecture

 JDBC API supports both two-tier and three-tier processing model.

 4.3.1 Two Tier Model

 In two tier model, Java application can directly communicate with database. For this
communication, the JDBC driver API is required.

 The Two Tier model is represented by following Fig. 4.3.1.

Fig. 4.3.1

 4.3.2 Three Tier Model

In this architecture, the HTML browser will send the command to Java Application.
The Java application will then communicate with database through JDBC API. The
architecture is as shown below -

Fig. 4.3.2

Review Question

1. Explain JDBC architecture.

 4.4 JDBC Packages

 The javax.sql is an API which contains several classes and interfaces for data source
access.

 Various useful classes in javax.sql.* package are :

Class name Use

ConnectionEvent It is useful for getting the information of the

source of connection related event.

PooledConnection It allows an access to a connection pool

management.

Advanced JAVA Programming 4 - 7 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

RowSet It extends the ResultSet interface for

supporting disconnected result sets.

XAConnection This interface is useful for distributed

transactions.

 The javax.sql.* is a supplementary package for java.sql package. Various features
of this package are -

1. The DataSource interface serves as an alternative to DriverManager class. The
main advantage of using DataSource is that the applications do not need to hard
code the driver class.

2. It provides support for distributed transactions. In distributed transactions,
using single transaction, data sources on multiple servers can be used by an
application. The classes and interfaces used in distributed transactions are -
o XADataSource
o XAConnection

3. The connection pooling is possible. The connection pooling is a mechanism by
which connections can be reused. This ultimately improves the overall
performance.

4. It allows the use of RowSet.

Mapping between JAVA and SQL

 When we wish to move the application from JAVA to SQL or vice versa then we
require JDBC driver to map the data types.

 SQL data type for corresponding JAVA primitive is given by following table -

JAVA SQL

boolean BIT

byte TINYINT

int INTEGER

short SMALLINT

long BIGINT

float REAL

double DOUBLE

Advanced JAVA Programming 4 - 8 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

String VARCHAR

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

Byte [] BINARY

 Some databases treat INTEGER data type as NUMERIC. We can access the SQL
datatype of each column in the database using getColumnType() function.

 4.5 A Brief Overview of the JDBC Process

 Following is a way by which JDBC works -

1) First of all Java application establishes connection with the data source.

2) Then Java application invokes classes and interfaces from JDBC driver for
sending queries to the data source.

3) The JDBC driver connects to corresponding database and retrieves the result.

4) These results are based on SQL statements which are then returned to Java
application.

5) Java application then uses the retrieved information for further processing.

Fig. 4.5.1

 4.6 Executing SQL Commands

 The MYSQL is a open source database product which can be downloaded from the
web site.

Advanced JAVA Programming 4 - 9 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 After getting installed on the machine the command prompt window for MYSQL
can appear. The screenshot is as follows -

 Now let us go through some MYSQL query statements which are required while
handling the database.

1. Creating database

 mysql> CREATE DATABASE mydb;
 Query OK, 1 row affected (0.15 sec)

2. Displaying all the databases

 mysql> SHOW DATABASES;
 +-------------+
 | Database |

 +-------------+
 | mydb |
 | mysql |

 | students |
 | test |
 +--------------+

 4 rows in set (0.06 sec)

3. Selecting particular database

 mysql> USE MYDB;

 Database changed

Advanced JAVA Programming 4 - 10 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

4. Creating table

 We must create a table inside a database hence it is a common practice to use create
table command after USE database command. While creating a table we must
specify the table fields.

 mysql> CREATE TABLE my_table(id INT(4),name VARCHAR(20));

 Query OK, 0 rows affected (0.28 sec)

 Use of Primary Key : The primary key contains the unique value. The primary key
column can not contain NUL value. Each table can have only one primary key.
Following is a SQL statement used to create PRIMARY KEY.

 CREATE TABLE student_table(

 roll_no INT(4) NOT NULL AUTO_INCREMENT,

 name VARCHAR(50) NOT NULL,

 address VARACHAR(50) NOT NULL,

 PRIMARY KEY(roll_no)

);

 In above example the roll_no acts as a primary key for the student_table.

5. Displaying a table

 After creating the table using SHOW command we can see all the existing tables in
the current database.

 mysql> SHOW TABLES;

 +-----------------------+
 | Tables_in_mydb |
 +-----------------------+

 | my_table |
 +-----------------------+
 1 row in set (0.00 sec)

6. Displaying the table fields

 For knowing the various fields of the table we may use following command.
 mysql> DESCRIBE my_table;
 +---------+----------------+--------+------+---------- +---------+
 | Field | Type | Null | Key | Default | Extra |

 +---------+----------------+--------+------+-----------+--------+
 | id | int(4) | YES | | NULL | |
 | name | varchar(20) | YES | | NULL | |

 +---------+----------------+--------+------+---------- +-------- +
 2 rows in set (0.07 sec)

Advanced JAVA Programming 4 - 11 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

7. Inserting values into the table

 We can insert only one complete record at a time. It is as shown below -
 mysql> INSERT INTO my_table
 -> VALUES(1,'SHILPA');
 Query OK, 1 row affected (0.05 sec)

8. Displaying the contents of the table

 mysql> SELECT * FROM my_table;
 +------+------------+

 | id | name |
 +------+------------+
 | 1 | SHILPA |

 +-------+------------+
 1 row in set (0.06 sec)

 We can also write SELECT statement for selecting particular row by specifying
some condition such as -

 mysql> SELECT * FROM my_table where id=1;
 or

 mysql> SELECT * FROM my_table where name=’SHILPA’;

 Thus we can insert the rows into the table by repeatedly giving the INSERT
command.

 If we want to get the records in sorted manner then we use ORDER BY clause
 mysql> SELECT * FROM my_table;
 +-------+---------------+
 | id | name |

 +-------+---------------+
 | 1 | SHILPA |
 | 2 | SUPRIYA |

 | 3 | YOGESH |
 | 4 | MONIKA |
 +-------+---------------+

 4 rows in set (0.00 sec)
 mysql> SELECT * FROM my_table ORDER BY name;
 +------+-------------+

 | id | name |
 +------+-------------+
 | 4 | MONIKA |

1	SHILPA
2	SUPRIYA
3	YOGESH

 +------+-------------+
 4 rows in set (0.00 sec)

Advanced JAVA Programming 4 - 12 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

9. Updating the record

 For updating the record in the database following command can be used -
 mysql> UPDATE my_table
 -> SET name='PRIYANKA'
 -> WHERE id=4;

 Query OK, 1 row affected (0.05 sec)
 Rows matched: 1 Changed: 1 Warnings: 0
 mysql> SELECT * FROM my_table;

 +------+--------------+
 | id | name |
 +-----+---------------+

1	SHILPA
2	SUPRIYA
3	YOGESH

 | 4 | PRIYANKA |
 +-----+---------------+
 4 rows in set (0.00 sec)

10. Deleting record

 For deleting particular record from a database
 mysql> DELETE FROM my_table
 -> WHERE id=3;

 Query OK, 1 row affected (0.04 sec)

 Then use SELECT statement for displaying the contents of the table we use
following command

 mysql> SELECT * FROM my_table;
 +------+---------------+
 | id | name |

 +------+---------------+
 | 1 | SHILPA |
 | 2 | SUPRIYA |

 | 4 | PRIYANKA |
 +------+---------------+
 3 rows in set (0.00 sec)

11. For deleting the table

 The table can be deleted using the command.
 mysql>drop table my_table;

12. Inner join

 This query used to display the result from both the tables when at least one column
from both the tables is matching -

Advanced JAVA Programming 4 - 13 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

For example

Consider table Customer
Cust_Id Name City

1 Rahul Bombay
2 Priyanka Pune
3 Supriya Banglore

Consider table Order
Order_Id Cust_Id Order_Number

10 3 1234
20 1 5678
30 1 8900

 Then we can make use of inner join query as follows -
 SELECT Customer.Name, Customer.city, Order.Order_Number

 FROM Customer
 INNER JOIN Order
 ON Customer.Cust_Id=Order.Order_Id

Name City Order_Number

Rahul Bombay 5678

Rahul Bombay 8900
13. Order by clause

 If we want to get the records in sorted manner then we use ORDER BY clause
 mysql> SELECT * FROM my_table;

id name
1 SHILPA
2 SUPRIYA
3 YOGESH
4 MONIKA

 mysql> SELECT * FROM my_table ORDER BY name;

id name

4 MONIKA

1 SHILPA

2 SUPRIYA

3 YOGESH

Advanced JAVA Programming 4 - 14 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 4.7 Database Connection

 Prerequisite : We need following things for connecting to database Using JDBC

1. MySQl is already Installed and required database is created.

2. JDK is installed.

3. A database connector mysql-connector-java-X.X.XX-bin must be downloaded
and present at the path.

 C:\your_tomcat_directory\common\lib

4. Tomcat is running.

 For connecting java application with the mysql database, Following steps are
needed to follow -

1. Driver class : The driver class for the mysql database is com.mysql.jdbc.Driver.
Here we can instantiate the object for JDBC driver by using following statement.

 Class.forName("com.mysql.jdbc.Driver");

2. Connection URL : The connection URL for the mysql is
 databases jdbc:mysql://localhost:3306/my_database

Where

 jdbc is the API,

 mysql is the database,

 localhost is the server name on which mysql is running, we may also use IP address,
3306 is the port number

 my_database is the database name. (We may use any database, in such case, you
need to replace the my_database with your database name.)

 Username : The default username for the mysql database is root. If you haven’t set
any user name it could be blank.

 Password : Password is given by the user at the time of installing the mysql
database.

The connection URL can be obtained using the method getConnection. This method is
defined in class named DriverManager. Note that this DriverManager class is defined in
java.sql.* package. We can obtain the instance for connection using following statement
con = DriverManager.getConnection("jdbc:mysql://localhost:3306/my_database","","");

 The list of common drivers along with JDBC URL is,

1. ODBC Driver

Syntax :

 jdbc:odbc:<data source name>

Advanced JAVA Programming 4 - 15 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Example :

 jdbc:odbc:MyDataSource

2. MYSQL

Syntax :

 jdbc:mysql://[host][:port]/[database]

Example :

 jdbc:mysql://localhost:3306/Mydatabase

3. ORACLE

Syntax :

 jdbc:oracle:<drivertype>:<user>/<password>@<database>

Example :

 jdbc:oracle:thin:myuser/mypassword@localhost:mydatabse

 4.8 Basic JDBC Program Concept

 Following steps are used to connect JDBC to MYSQL.

 Step 1 : Import java.sql.* package in the JDBC program

Following line can be included in your JDBC program at the beginning.
 import java.sql.*

 Step 2 : Load JDBC Driver.

The JDBC driver for MYSQL can be loaded using following statement
 Class.forName("com.mysql.jdbc.Driver");

 Step 3 : Get connection using the Driver Manager
conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/my_database","root","password");

 Step 4 : Create Statement
 stmt = conn.createStatement();

 Step 5 : Execute Query
 String sql = "SELECT Roll,StudName FROM my_table";
 ResultSet rs = stmt.executeQuery(sql);

 Step 6 : Display the result.

Advanced JAVA Programming 4 - 16 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 4.9 Executing Queries

The executeQuery() Method

 The executeQuery() method is belonging to java.sql.Statement interface of JDBC.

 This method is used for SQL statements which retrieve some data from the
database. For example is SELECT statement.

 This method is basically used for SELECT queries which fetch some data from the
database. This method returns one java.sql.ResultSet object which contains the
data returned by the query.

 This method throws the exception SQLException.

 The general syntax is :
 ResultSet executeQuery(String SQL)

The executeUpdate() Method

 The executeUpdate() method is used to update the database.

 This method makes used of all the Data Manipulation Language (DML) statements
such as INSERT, DELETE, UPDATE or Data Definition Language (DDL) such as
CREATE, ALTER and so on.

 This method returns an int value which represents the number of rows affected by
the query. This value will be 0 for the statements which return nothing.

 This method throws the exception SQLException.

 The general syntax of this method is
 int executeUpdate(String sql)

Difference between executeQuery() and executeUpdate() Method

executeQuery() executeUpdate()

This method is used to execute SQL

statements in order to retrieve data from

the database.

This method is used to execute SQL statements

which are intended to update or modify the

database.

This method returns a ResultSet object in

which the result of the query is strored.

This method rerurns integer value that represent

number of rows affected by the query.

This method is normally used to execute

SELECT queries.

This method is used to execute non SELECT

queries. That is-

DML as INSERT, DELETE, UPDATE or

DDL as CREATE, DROP

Advanced JAVA Programming 4 - 17 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 4.9.1 CREATE Statement

 The database can be created using SQL query as follows -
 CREATE DATABASE databasename;

 For example we can create a database named My_database as follows -
 CREATE DATABASE My_database;

 After creating the database, a table can be created within it. The query used for
creating a table is

 CREATE TABLE table_name
 (

 column_name1 data_type(size),
 column_name2 data_type(size),
 column_name3 data_type(size),

);

 The column_name specifies the name of the columns of the table, data_type specifies
the type of data the column field has. The size field specifies the size of the column
in the table.

 For example
 CREATE TABLE My_table

 (
 Roll INT,
 StudNameVARCHAR(20)

);

 With the help of Java we can execute the query using following statement.
 Statement stat = con.createStatement();

 ResultSetrs = stat.executeQuery("CREATE TABLE MY_table
 (Roll INT, StudName VARCHAR(20))");

 Here is a simple Java program that illustrates how to create a table using SQL
statement.

Java Program

 import java.sql.*;
 public class JDBCDemo1
 {

 public static void main(String [] args)
 {
 Connection con = null;

 try
 {
 Class.forName("com.mysql.jdbc.Driver");

Advanced JAVA Programming 4 - 18 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 con = DriverManager.getConnection("jdbc:mysql://localhost/my_database","root","");
 System.out.println("Connection Successful!");
 Statement stat=con.createStatement();

 int result=stat.executeUpdate("CREATE TABLE My_table(Roll INT,StudName
 VARCHAR(20))");
 System.out.println("Table Created");
 stat.close();

 con.close();
 }
 catch (ClassNotFoundException e)

 {
 System.err.println("Exception: "+e.getMessage());
 }

 catch (SQLException e)
 {
 System.err.println("Exception: "+e.getMessage());

 }

 }

 }

Program Explanation : In the above program,

1) We are first establishing the connection with the database and then using
following statements particular SQL statement can be executed.

 Statement stat=con.createStatement();
 int result= stat.executeUpdate("CREATE TABLE My_table(Roll INT, StudName
 VARCHAR(20))");

2) First of all the object or the instance of Statement named stat is created.

3) Then the executeUpdate() method of that object is written in which the complete
SQL query is passed. Thus we can create the table in our database.

 Output

 c:\test>javac JDBCDemo1.java
 c:\test>java JDBCDemo1

 Connection Successful!
 Table Created

 4.9.2 SELECT Statement

 Using the select statement we can get the result from the database the result is
obtained in the instance of ResultSet. The executeQuery function returns the
ResultSet Object. The syntax of executeQuery is

 ResultSet executeQuery(Strin SQL);

Advanced JAVA Programming 4 - 19 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 The ResultSet is basically an interface which provides access to the table of data
generated by executing a statement. The table rows are retrieved in sequence using
the name of the column field.

 Following Java code is used for getting the result and displaying them,

Prerequisite - i) Database is created ii) The table is stored in this database

 iii) Some record is inserted in the table.

JDBCDemo3.java

 import java.sql.*;

 public class JDBCDemo3 {
 public static void main(String [] args) {
 Connection con = null;

 try {
 Class.forName("com.mysql.jdbc.Driver");
 con=DriverManager.getConnection("jdbc:mysql://localhost/my_database","root","");
 Statement stat=con.createStatement();

 // Using SELECT Query
 String sql="SELECT * FROM My_table";
 ResultSet rs=stat.executeQuery(sql);

 System.out.println("Displaying the contents of the table...");
 while(rs.next())

 {
 int RollNo = rs.getInt("Roll");
 String Name = rs.getString("StudName");

 //Display values
 System.out.print("Roll Number: " + RollNo);
 System.out.print(", Student Name: " + Name);

 }
 rs.close();
 stat.close();

 con.close();
 }
 catch (ClassNotFoundException e) {

 System.err.println("Exception: "+e.getMessage());
 }
 catch (SQLException e) {

 System.err.println("Exception: "+e.getMessage());
 }
 }

 }

Advanced JAVA Programming 4 - 20 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

 4.9.3 UPDATE Statement

 For updating data in the database the UPDATE query must be executed. The syntax
of UPDATE command is

 UPDATE table_name

 SET column1 = value1, column2 = value2...., columnN = valueN
 WHERE [condition];

 The condition can be combined using AND and OR operators.

 The steps to update the data in the database are as follows -

 Step 1 : Create the instance for Connection class using DriverManager’s
 getConnection method.

 Step 2 : Then invoke the createStatement method in order to create the object for
 Statement class.

 Step 3 : With the help of Statement class object the method executeUpdate will be
 invoked. The SQL query for UPDATE record can be passed as a parameter to
 executeUpdate method. The general syntax for executeUpdate is
 public int executeUpdate(java.lang.String sql)

The sql represents the Query string using INSERT, DELETE or UPDATE.

The return value is integer which indicates number of rows affected.

Following is a Java program that updates the record stored in the table of a database.

JDBCDemo4.java

 import java.sql.*;
 public class JDBCDemo4 {
 public static void main(String [] args) {

Advanced JAVA Programming 4 - 21 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Connection con = null;
 try {
 Class.forName("com.mysql.jdbc.Driver");

 con = DriverManager.getConnection("jdbc:mysql://localhost/my_database","root","");
 Statement stat=con.createStatement();

 String sql="UPDATE My_table " + "SET StudName='Anand' WHERE Roll=1";
 stat.executeUpdate(sql);

 sql="SELECT * FROM My_table";
 ResultSet rs=stat.executeQuery(sql);

 System.out.println("Displaying the contents of the table...");
 while(rs.next())
 {

 int RollNo = rs.getInt("Roll");
 String Name = rs.getString("StudName");
 //Display values

 System.out.print("Roll Number: " + RollNo);
 System.out.print(", Student Name: " + Name);
 }

 rs.close();
 stat.close();
 con.close();

 }
 catch (ClassNotFoundException e) {
 System.err.println("Exception: "+e.getMessage());

 }
 catch (SQLException e) {
 System.err.println("Exception: "+e.getMessage());

 }
 }
}

Output

Advanced JAVA Programming 4 - 22 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 4.9.1 Consider bank table with attributes AccountNo, CustomerName, Balance, Phone
and Address. Write a database application which allows insertion, updation and deletion of
records in Bank table. Print values of all customers whose balance is greater than 20,000.

Solution : Step 1 : Create a database using suitable database such as MySQL/Microsoft
Access/Oracle. The name of the database is bankdb and the name of the table created is
banktable.

The sample database table will be as follows -

Step 2 : The java program for handling this database for given operations can be
written as follows. Here we have taken the file name as test.java.
import java.sql.*;
public class test {
 public static void main(String [] args) {
 Connection con = null;
 int result;
 ResultSet rs = null;
 Statement stat=null;
 try {
 Class.forName(“sun.jdbc.odbc.JdbcOdbcDriver”);
 con = DriverManager.getConnection(“jdbc:odbc:bankdb”, “ ”, “ ”);
 stat = con.createStatement();
 result = stat.executeUpdate(“INSERT INTO banktable” +
“(AccountNo,CustomerName,Balance,Phone,Address)” +
“VALUES(55,’EEE’,40000,555555555,’Pune’)”);
 System.out.println(“Values inserted in table!”);
 result = stat.executeUpdate(“DELETE FROM banktable WHERE AccountNo=33");
 System.out.println(“Values deleted from table!”);
 result = stat.executeUpdate(“UPDATE banktable set AccountNo=100 WHERE
 AccountNo=11");
 System.out.println(“Values updated from table and updated record is as follows....”);

Advanced JAVA Programming 4 - 23 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 rs = stat.executeQuery(“SELECT * FROM banktable WHERE AccountNo=100");

 while (rs.next())
 {
 System.out.println(“AccountNo: ” + rs.getObject(1).toString());
 System.out.println(“CustomerName: ” + rs.getObject(2).toString());
 System.out.println(“Balance: ” + rs.getObject(3).toString());
 System.out.println(“Phone: ” + rs.getObject(4).toString());
 System.out.println(“Address: ” + rs.getObject(5).toString());
 }
 rs = null;
 System.out.println(“Following records having salary>20000...”);
 rs = stat.executeQuery(“SELECT * FROM banktable WHERE Balance>20000");
 System.out.println(“AccountNo Name Balance”);
 while (rs.next())
 {
 if (rs != null)
 System.out.println(rs.getObject(1).toString() + “ ” + rs.getObject(2).toString() +
 “ ” + rs.getObject(3).toString());
 }
 }
 catch (ClassNotFoundException e)
 {
 System.err.println(“Exception: ” + e.getMessage());
 }
 catch (SQLException e)
 {
 System.err.println(“Exception: ” + e.getMessage());
 }
 finally
 {
 try
 {
 if(rs!=null)
 {
 rs.close();
 rs=null;
 }
 if(stat!=null)
 {
 stat.close();
 stat=null;
 }
 if (con != null)
 {
 con.close();

Advanced JAVA Programming 4 - 24 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 con = null;
 }

 }catch (SQLException e) { }
 }
 }
}

 4.10 Statement

 A Statement object is used for executing a static SQL statement and obtaining the
results produced by it.

 The Statement interface can not accept parameters.

Creation of Statement Object

 The statement object can be created using the createStatement() method. Following
is a illustrative Java code.

 try {
 Class.forName("com.mysql.jdbc.Driver");

 con = DriverManager.getConnection("jdbc:mysql://localhost/my_database","root","");
 Statement stat=con.createStatement();
 …

 }
 catch(SQLException ex) {
 …

 }

 After creating the statement object one of the following three methods can be
invoked.

 1. execute : It Returns true if a ResultSet object can be retrieved; otherwise, it returns
 false. Use this method to execute SQL DDL statement.
 The general syntax is
 bool execute(String Q)

2. executeUpdate : It returns the number of rows affected by the execution of the SQL
 statement. Use this method to execute SQL statements using the
 INSERT, UPDATE or DELETE statement. The general syntax is
 int executeUpdate(String Q)

3. executeQuery : It returns a ResultSet object. Use this method when you expect to

 get a result set. Normally this statement is used with a SELECT

 statement. The general syntax is
 ResultSet executeQuery(String Q)

Advanced JAVA Programming 4 - 25 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Closing Statement Object

Using a call to close method the Statement object can be closed. For instance

 Stat.close();

Types of Statements :

There are two types of statements.

1. Prepared statement 2. Callable statement

Let us discuss them in detail.

 4.10.1 Prepared Statement

 The java.sql.PreparedStatement interface object represents a precompiled SQL
statement.

 This interface is used to efficiently execute SQL statements multiple times. That is
when we want to insert a record in a table by putting different values at runtime.

 This statement is derived from the Statement class.

 The PreparedStatement interface can be created by calling PrepareStatement()
method.

 The prepareStatement() is available in java.sql.Connection interface.

 The prepareStatement() method takes SQL statement in java format.
 prepareStatement("insert into student values(?,?)").

where each ? represents the column index number in the table. If table student has
rollnumber and name columns, then ? refers to rollnumber, ? refers to name.

 After that we need to set the value to each ? by using the setter method from
PreparedStatement interface as follows :

 setXXX(ColumnIndex,value)

• Various setter methods are

SQL datatype Method used

char/varchar/varchar2 setString()

int/number setInt()

float/number setFloat()

double/Float setDouble()

long/int setLong()

int/short setShort()

time setTime()

datetime/date setDate()

Advanced JAVA Programming 4 - 26 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Following is a Java Program that makes use of Prepared Statement for inserting data in
the table.

JDBCDemo5.java

 import java.sql.*;
 public class JDBCDemo5 {
 public static void main(String [] args) {

 Connection con = null;
 try {
 int rollnum=2;

 String name="Parth";
 Class.forName("com.mysql.jdbc.Driver");
 con = DriverManager.getConnection("jdbc:mysql://localhost/my_database","root","");

 PreparedStatement ps=con.prepareStatement("INSERT INTO My_table
 VALUES(?,?)");
 ps.setInt(1,rollnum);
 ps.setString(2,name);

 int result=ps.executeUpdate();
 if(result!=0)
 System.out.println("Values inserted in the table");

 else
 System.out.println("Values are not inserted in the table");
 String sql="SELECT * FROM My_table";

 ps=con.prepareStatement(sql);
 ResultSet rs=ps.executeQuery();
 System.out.println("Displaying the contents of the table...");

 while(rs.next()) {
 int RollNo = rs.getInt("Roll");
 String Name = rs.getString("StudName");

 //Display values
 System.out.print("Roll Number: " + RollNo);
 System.out.println(", Student Name: " + Name);

 }
 rs.close();
 ps.close();

 con.close();
 }
 catch (ClassNotFoundException e) {

 System.err.println("Exception: "+e.getMessage());
 }
 catch (SQLException e) {

 System.err.println("Exception: "+e.getMessage());
 }
 }

}

Advanced JAVA Programming 4 - 27 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

The callable statement is used when we want to access the database stored
procedures. The stored procedure is basically a block of code which is identified by
unique name. Let us first understand how to create procedure.

Creating Procedure

 The procedure can be created using following syntax.
 DELIMITER //
 CREATE PROCEDURE procedureName(paramters_list)

 BEGIN
 SQL Statements to be executed
 END //

Calling Procedure

When calling the stored procedure, the CallableStatement object is used. For this
object three types of parameters are used.

Parameter Description

IN A parameter whose value is unknown when the SQL statement is created.

Then the values can be associated with IN parameters with the setXXX()

methods.

OUT A parameter whose value is supplied by the SQL statement it returns. These

values are obtained in OUT parameters with the getXXX() methods.

INOUT A parameter that supplies input as well as accepts output parameter

requires a call to the appropriate setXXX method.

Advanced JAVA Programming 4 - 28 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

You can create an instance of a CallableStatement by calling the prepareCall() method
on a connection object. Here is an example :
 CallableStatement callableStatement = connection.prepareCall("{call myprocedure(?, ?)}");

Setting the values to parameters

We can set the values to the paramters using setXX method. For example :
 connection.prepareCall("{call myprocdeures(?, ?)}");
 callableStatement.setInt(1, 10);
 callableStatement.setString (2, “AAA”);

Executing the CallableStatement

Once you have set the parameter values you need to set, you are ready to execute
the CallableStatement. Here is how that is done :
 ResultSet result = callableStatement.executeQuery();

Then using the instance of ResultSet we can display the result.
Following is a simple Java application program (illustrated in stepwise manner) that

makes use of callable statement.
Step 1 : Create a database in MySQL with the table. Insert some values inside the table.

The contents of the table are represented by following Screenshot.

 The sample table my_table is as follows -
Roll StudName

1 Anand

2 Parth

3 Anuja

4 Swapnali

Advanced JAVA Programming 4 - 29 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Step 2 : Then Create a procedure as follows -

The procedure is as follows -
 >use my_database

 > DELIMITER //
 >CREATE PROCEDUTR listStudents()
 -> BEGIN

 -> SELECT * FROM my_table
 -> END //

 Step 3 :

 Before you start writing the application make sure that the driver for MySQL is
present in the /tomcat/lib directory.
It should be mysql-connector-java-5.xx.xx-bin.jar file.

 If it is not present then it can be downloaded from the site

 https://dev.mysql.com/downloads/connector

 Go for Platform independent option and select Zip or Tar file option depending
upon your need. Then get is downloaded and save it to tomcat’s lib directory.

 The Java code that makes use of Callable Statement for invoking the created
procedure is as given below.

JDBCDemo6.java

import java.sql.CallableStatement;
import java.sql.Connection;

import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;

Advanced JAVA Programming 4 - 30 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

public class JDBCDemo6 {
 public static void main(String[] args)
 {

 Connection con=null;
 try {
 //Getting the driver for MyQL
 Class.forName("com.mysql.jdbc.Driver");
 con = DriverManager.getConnection("jdbc:mysql://localhost/my_database","root","");
 //Creating instance of CallableStatement using prepare call
 //The procedure listStudents() created in Step 2 is invoked here
 CallableStatement cs=con.prepareCall("CALL listStudents()");
 ResultSet rs=cs.executeQuery();

 while(rs.next()){
 System.out.println(rs.getInt(1)+"\t"+rs.getString(2));
 }

 }catch(Exception e){
 e.printStackTrace();
 }

 finally {
 try {
 con.close();

 }catch(SQLException e){
 e.printStackTrace();
 }

 }
 }

}

 4.11 Result Set

 The ResultSet interface is an important interface which is used to access the
database table with general width and unknown length.

 The table rows are retrieved in sequence using ResultSet object. Within a row its
column values can be accessed in any order.

 A ResultSet maintains a cursor pointing to its current row of data. Initially the
cursor is positioned before the first row. The 'next' method moves the cursor to the
next row.

 The ResultSet object can be created using executeQuery() method. For example

 Statement statement = connection.createStatement();

 ResultSet result = statement.executeQuery("select * from my_table");

Advanced JAVA Programming 4 - 31 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 4.11.1 Navigating Methods

 Various commonly used navigating methods for ResultSet are as given in the
following table.

Sr. No. Methods Description

1. public boolean first() throws SQLException Moves the cursor to the first row.

2. public void last() throws SQLException Moves the cursor to the last row.

3. public boolean previous() throws

SQLException

Moves the cursor to the previous row.

This method returns false if the previous

row is off the result set.

4. public boolean next() throws SQLException Moves the cursor to the next row. This

method returns false if there are no more

rows in the result set.

5. public int getRow() throws SQLException Returns the row number that the cursor

is pointing to.

 4.11.2 Reading the Result using ResultSet

 There are various methods using which the data can be retrieved using the
ResultSet object. These methods can be used with either column Name or with
column Index. Few commonly used methods are

Sr. No. Methods Description

1. public int getInt(int index) Returns the integer value in the current row

specified by the index.

2. public int getInt(String Name) Returns the integer value in the current row

specified by the column Name.

3. public Date getDate(int index) Returns the Date value in the current row

specified by index.

4. Public Date getDate(String Name) Returns the Date value in the current row

specified by Name of the column.

 Similar to getInt there are methods such as getString, getBoolean, getByte,
getFloat, getDouble and so on.

Advanced JAVA Programming 4 - 32 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 4.11.3 Updating ResultSets

 There are various methods for updating the ResuletSets denoted by updateXXX().
Just similar to getXX method the update method makes use of Column Index and
Column Name. These are as given below -

Sr. No. Methods Description

1. Public void updateString(int

index, String new_val)

Updates the string by new_val which is

specified by index.

2. Public void updateString(int

Name, String new_val)

Updates the string by new_val which is

specified by Name of the column.

 The row values can be updated using the methods as given below.

Sr. No. Methods Description

1. public void updateRow() Updates current row from database.

2. public void deleteRow() Deletes the current row from database.

3. Public void insertRow() Inserts the row in the database.

 4.12 Multiple Choice Questions

Q.1 JDBC stands for_______.

 a Java Database Connectivity b Java Database Control

 c Java Database Components d None of these

Q.2 Which statements about JDBC are true ?

 a JDBC is an API to connect to relational-, object and XML data sources.

 b JDBC stands for Java DataBase connectivity.

 c JDBC is an API to access relational databases, spreadsheets and flat files.

 d JDBC is an API to bridge the object-relational mismatch between OO programs
 and relational databases.

Q.3 Which packages contain the JDBC classes ?

 a java.jdbc and javax.jdbc b java.jdbc and java.jdbc.sql

 c java.sql and javax.sql d java.rdb and javax.rdb

Q.4 JDBC technology-based drivers generally fit into how many categories ?

 a 4 b 3

 c 2 d 5

Advanced JAVA Programming 4 - 33 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.5 Which type of driver provides JDBC access via one or more ODBC drivers ?

 a Type 1 driver b Type 2 driver

 c Type 3 driver d Type 4 driver

Q.6 Which type of driver converts JDBC calls into the network protocol used by the

database management system directly ?

 a Type 1 driver b Type 2 driver

 c Type 3 driver d Type 4 driver

Q.7 Which type of driver of JDBC is called pure driver ?

 a Type 1 driver b Type 2 driver

 c Type 3 driver d Type 4 driver

Q.8 Which type of driver of JDBC is called partly Java Driver ?

 a Type 1 driver b Type 2 driver

 c Type 3 driver d Type 4 driver

Q.9 Which driver is efficient and always preferable for using JDBC applications ?

 a Type 1 driver b Type 2 driver

 c Type 3 driver d Type 4 driver

Q.10 The JDBC-ODBC bridge is_____.

 a three tiered b multithreaded

 c best for any platform d all of the above

Q.11 Which driver is called as thin-driver in JDBC ?

 a Type-4 driver b Type-1 driver

 c Type-3 driver d Type-2 driver

Q.12 Which driver type of JDBC is used in either applet or servlet ?

 a Type 1 and 2

 b Type 1 and 3

 c Type 3 and 4

 d Type 4 only

Q.13 Which of the following is false as far as type 4 driver is concern ?

 a Type 4 driver is “native protocol, pure java” driver

 b Type 4 drivers are 100 % Java compatible

 c Type 4 drivers uses socket class to connect to the database.

 d Type 4 drivers can not be used with Netscape.

Advanced JAVA Programming 4 - 34 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.14 Which of the following JDBC drivers is known as a partially java driver ?

 a JDBC-ODBC bridge driver b Native-API driver

 c Network protocol driver d Thin driver

Q.15 Which class has strong support of the JDBC architecture ?

 a The JDBC driver manager b The JDBC driver test suite

 c The JDBC-ODBC bridge d All of these

Q.16 In order to transfer data between a database and an application written in the Java

programming language, the JDBC API provides which of these methods ?

 a Methods on the ResultSet class for retrieving SQL SELECT results as Java
 types.

 b Methods on the PreparedStatement class for sending Java types as SQL
 statement parameters.

 c Methods on the CallableStatement class for retrieving SQL OUT parameters as
 Java types.

 d All of these.

Q.17 The JDBC API has always supported persistent storage of objects defined in the Java

programming language through the methods getObject and setObject.

 a True b False

Q.18 What is, in terms of JDBC, a DataSource ?

 a A DataSource is the basic service for managing a set of JDBC drivers.

 b A DataSource is the Java representation of a physical data source.

 c A DataSource is a registry point for JNDI-services.

 d A DataSource is a factory of connections to a physical data source.

Q.19 Which of the following describes the correct sequence of the steps involved in making a

connection with a database.

1. Loading the driver.

2. Process the results.

3. Making the connection with the database.

4. Executing the SQL statements.

 a 1,3,4,2 b 1,2,3,4

 c 2,1,3,4 d 4,1,2,3

Advanced JAVA Programming 4 - 35 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.20 Which of the following methods are needed for loading a database driver in JDBC ?

 a registerDriver() method b Class.forName()

 c Both a and b d getConnection()

Q.21 Which type of statement can execute parameterized queries ?

 a PreparedStatement b ParameterizedStatement

 c CallableStatement d All of these

Q.22 What is used to execute parameterized query ?

 a Statement interface b PreparedStatement interface

 c ResultSet interface d None of the above

Q.23 Which of the following encapsulates an SQL statement which is passed to the database

to be parsed, compiled, planned and executed ?

 a DriverManager b JDBC driver

 c Connection d Statement

Q.24 Which of the following is used to call a stored procedure ?

 a Statement b PreparedStatement

 c CallableStatment d CalledStatement

Q.25 What happens if you call deleteRow() on a ResultSet object ?

 a The row you are positioned on is deleted from the ResultSet, but not from the
 database.

 b The row you are positioned on is deleted from the ResultSet and from the
 database.

 c The result depends on whether the property synchronizeWithDataSource is set
 to true or false.

 d You will get a compile error : The method does not exist because you can not
 delete rows from a ResultSet.

Q.26 The JDBC-ODBC bridge supports multiple concurrent open statements per

connection ?

 a True b False

Q.27 All raw data types (for instance-data for images) should be read and uploaded to the

database as an array of________.

 a byte b int

 c boolean d char

Advanced JAVA Programming 4 - 36 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.28 Are prepared statements actually compiled ?

 a Yes, they compiled

 b No, they are bound by the JDBC driver

Q.29 When the message “No Suitable Driver” occurs ?

 a When the driver is not registered by Class.forname() method.

 b When the user name, password and the database does not match.

 c When the JDBC database URL passed is not constructed properly.

 d When the type 4 driver is used.

Q.30 Database system compiles query when it is___.

 a executed

 b initialized

 c prepared

 d invoked

Q.31 ______ is an open source DBMS product that runs in window as well as Linux.

 a JSP/SQL b MySQL

 c Microsoft access d SQL server

Q.32 To execute a statement, we invoke method____.

 a executeUpdate method b executeRel method

 c executeStmt method d executeConn method

Q.33 Method on resultset that tests whether or not there remains at least one unfetched tuple

in result set, is said to be _______.

 a fetch method

 b current method

 c next method

 d access method

Q.34 The ResultSet.next method is used to move to the next row of the ResultSet, making it

the current row.

 a True

 b False

Q.35 ResultSet object can be moved forward only and it is updatable.

 a True

 b False

Advanced JAVA Programming 4 - 37 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.36 Which JDBC drivers will run your program ?

 a The JDBC-ODBC bridge.

 b The JDBC driver manager.

 c The JDBC driver test suite.

 d None of the above.

Q.37 JDBC is a Java API that is used to connect and execute query to the database.

 a True

 b False

Answer Keys for Multiple Choice Questions :

Q.1 a Q.2 b Q.3 c Q.4 a Q.5 a Q.6 d Q.7 d

Q.8 b Q.9 d Q.10 b Q.11 a Q.12 c Q.13 d Q.14 b

Q.15 a Q.16 d Q.17 a Q.18 d Q.19 a Q.20 c Q.21 a

Q.22 b Q.23 d Q.24 d Q.25 b Q.26 a Q.27 a Q.28 a

Q.29 c Q.30 c Q.31 b Q.32 a Q.33 c Q.34 a Q.35 b

Q.36 c Q.37 a

Advanced JAVA Programming 4 - 38 Database Programming using JDBC

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Notes

(5 - 1)

UNIT V

5 Remote Method
Invocation (RMI)

Syllabus
Remote Method Invocation : Architecture, RMI registry, the RMI Programming Model; Interfaces
and Implementations; Writing distributed application with RMI, Naming services, Naming and
Directory Services, Setting up Remote Method Invocation - RMI with Applets, Remote Object
Activation; The Roles of Client and Server, Simple Client/Server Application using RMI.

Contents

5.1 Remote Method Invocation

5.2 Architecture

5.3 RMI Registry

5.4 The RMI Programming Model

5.5 Interfaces and Implementations

5.6 Writing Distributed Application with RMI

5.7 Naming Services

5.8 Naming and Directory Services

5.9 RMI with Applets

 5.10 Remote Object Activation

 5.11 The Roles of Client and Server

 5.12 Simple Client/Server Application using RMI

 5.13 Multiple Choice Questions

Advanced JAVA Programming 5 - 2 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 5.1 Remote Method Invocation

 RMI stands for Remote Method Invocation. It is a mechanism in Java which allows
an object running on one system to access an object running on another system.

 This technology consists of a server and a client.

 It is used to build distributed applications.

 For making the remote communication between two java programs the mechanism
of RMI is used.

 While implementing the RMI applications the java.rmi package is used.

 There are few commonly used terminologies in RMI and those are -

o Remote Object : In Java based distributed computing environment, remote
object is the one whose methods can be invoked from another Java Virtual
Machine. This JVM can be on different host. The remote object is described by
the remote interfaces. The Remote Method Invocation (RMI) is a mechanism
used to invoke the remote object via the method defined in remote interface.

o Server : The remote server means the single remote object having the methods
that can be remotely invoked.

o Client : The remote client means the remote object that invokes the remote
methods on a remote object.

o Remote Interface : The remote object gets accessed via its remote interface.

 5.2 Architecture

 A RMI server program creates some remote objects, makes references to these

objects. These references are accessible from remote machine. The server then waits

for clients to invoke methods with the help of these objects.

 The client program executes and invokes the method on the server. In any RMI

application server and the client communicate with the help of stub and skeleton.

Stub is a client side entity used to invoke the remote object and skeleton is a server

side program which dispatches call to the method on the server.

 The RMI Registry is used to obtain the reference to a remote object. The task of

server is to call the registry and associate a name with a remote object. Using this

name from server’s registry the client can find (looks up) the remote object and then

invokes a required method.

Advanced JAVA Programming 5 - 3 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Fig. 5.2.1 illustrates the RMI flow.

Fig. 5.2.1 Architecture of RMI

 Step 1 : Server creates a remote object and registers it in the registry.

 Step 2 : Client makes a request for an object from the registry. The registry then returns

 the remote reference to the client.

 Step 3 : Client invokes the method to the stub, the stub in turn talks to the skeleton and
 skeleton in turn invokes method from the server.

 The RMI implementation is based on three layers and those are :
o The Stub / Skeleton layer
o Remote Reference layer
o Transport layer

1. The Stub/Skeleton layer

 This layer is responsible to route the method calls made by the client to the interface

reference and redirect these calls to the remote object.

2. Remote reference layer

 The remote reference layer defines and support the invocation semantics of RMI.

 This layer provide the object that represents the handle to the remote object using
the JRMP (Java Remote Method Protocol) protocol.

Advanced JAVA Programming 5 - 4 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 The object RemoteStub is used to carry out remote method invocation.

 The remote reference layer helps to add another kind of semantics to RMI. That is
with the help of this layer, single proxy can send method request to multiple
implantations simultaneously.

3. Transport Layer

 The transport layer is a binary data protocol that sends the remote object requests
over the wire.

 The transport layer makes use of TCP/IP for the communication between two JVMs.
This is connection oriented communication.

 For the communication, the JRMP i.e. Java Remote Method Protocol is on the top of
TCP/IP. The JRMP is basically a wire - level protocol.

 Generally the transport layer prefers to use multiple TCP/IP connections between
the client and server. But in RMI mechanism, the transport layer multiplexes the
multiple virtual connections within the single TCP/IP connection.

 5.3 RMI Registry

 RMI registry is a simplified name service where all the server objects are placed.

 When a server creates an object, it registers this object with RMIregistry. This
registered object has unique name which is called as bind name.

 When client wants to refer this object which is present on the server, it actually
needs the reference of that object. At that time, the client fetches that object from the
registry by using its bind name.

 RMI registry acts a broker between RMI servers and the clients. Essentially the RMI
registry is a place for the server to register services it offers and a place for clients to
query for those services.

Fig. 5.3.1 RMI registry

Advanced JAVA Programming 5 - 5 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 5.4 The RMI Programming Model

 For having Remote Method Invocation following three programs are created -

1. Interface program in which the remote method is declared.

2. Server program in which remote method is defined.

3. Client program from which the remote method is called.

 For running the following program, you open two command-prompt windows one
for running server and other for running client.

 5.5 Interfaces and Implementations

 In RMI, a remote interface is an interface that declares a set of methods that may be

invoked from a remote java virtual machine. A remote interface must satisfy the

following requirements :

1. A remote interface must at least extend, either directly or indirectly, the

 interface java.rmi.Remote.

2. Remote method declaration in a remote interface.

3. A remote method declaration must include the exception
java.rmi.RemoteException in its throws clause, in addition to any

 application - specific exceptions.

 In a remote method declaration, a remote object declared as a parameter or return
value (either declared directly in the parameter list or embedded within a
non-remote object in a parameter) must be declared as the remote interface, not the
implementation class of that interface.

 The interface java.rmi.Remote is a marker interface that defines no methods :
 public interface Remote { }

 In the RMI server-client communication, the interface program is written. Interface
program is a program in which remote method is declared. For example - following
is a Java program that implements the interface.

 import java.rmi.*;
 public interface FirstRMI extends Remote
 {

 void MyHello() throws RemoteException;
 }

 Note that the method named MyHello() will be defined in RMI server and RMI
client will invoke this method.

Advanced JAVA Programming 5 - 6 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 5.6 Writing Distributed Application with RMI

 It is not possible to directly refer to a remote object. It requires an active distributed
framework.

 For the Java distributed object model, a remote object is an object whose methods
can be invoked from another system which might be running on a different host.

 The remote object is described by remote interface that declares available methods.

 5.7 Naming Services

 When multiple servers are involved in your application, the naming service allows
you to specify logical server names rather than server addresses. For example,
instead of connecting to your database server at host using some address and port
number, you can specify the name of that server, such as
MYHost/MyCompany/MyServer.

 Similarly components on that server can be identified by specifying an initial server
name context plus the package and component name.

Fig. 5.7.1 Naming system

 Name Server consists of a program that implements a naming service protocol.
This protocol maps a human-recognizable name/address to a system-internal,
numeric, identification. Thus naming services are used to specify logical server
name rather than server addresses.

 The most prominently used name servers are Domain Name Servers / Domain
Name Service (DNS).

Advanced JAVA Programming 5 - 7 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 5.8 Naming and Directory Services

 Directory service is a kind of naming service which can perform searching of the
objects based on search filter criteria.

 Directory services also allow the modification of object attributes in the directory
service tree.

 The Object Management Group (OMG) provides a standard classification of
naming services.

 Directory services have a typical hierarchical structure each contained directory
object corresponding to some specific resources such as a file, a printer, or a user’s
profile. This directory object itself is actually manifested in a directory service as a
collection of attributes describing the kind of resource to which it is associated.

 A directory object in a directory service tree can be retrieved by its name.

 The directory objects can be added, deleted, searched or modified by using the
directory services. These operations are similar to database operations.

 Example of Directory service provider is Lightweight Directory Access Protocol
(LDAP) service.

 5.9 RMI with Applets

 The applet is a client side programming. Hence RMI with applet can be
implemented for the client program.

 In this applet, the applet class extends Applet. Inside this class - there are two
methods init and paint.

 In the init method, we try to connect to RMI server program and access the function
written in the RMI server program. In the following example we try to access the
function MyHello() which is present in RMI Server program.

 Following example shows both the server and client programs.

Interface (FirstRMI.java)

import java.rmi.*;
public interface FirstRMI extends Remote
{

 void MyHello() throws RemoteException;
}

Advanced JAVA Programming 5 - 8 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Server Program(FirstRMI_Server.java)

*
**
 RMI Server program [FirstRMI_Server.java]

**
*/
import java.rmi.*;

import java.rmi.registry.*;
import java.rmi.server.*;
import java.net.*;

public class FirstRMI_Server extends
java.rmi.server.UnicastRemoteObject implements FirstRMI

 {
 String address;
 Registry registry;

 int port=1234; //this is a server port
 //use the same port number for client
 //so that the communication can be possible

 public void MyHello() //Definition of remote method
 {

 System.out.println("Hello Friends!!!");

 }

 public FirstRMI_Server() throws RemoteException
 {

 try
 {
 address = (InetAddress.getLocalHost()).toString();

 }
 catch(Exception e)
 {

 System.out.println(e.getMessage());
 }
 System.out.println("Server started at: " + address + ", "+port);

 System.out.println("[Now run client with same IP address]");
 //creating the registry
 registry = LocateRegistry.createRegistry(port);

 registry.rebind("rmiServer", this);
 }
 static public void main(String args[])

 {

Remote method MyHello

is defined here.

Advanced JAVA Programming 5 - 9 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 try
 {
 FirstRMI_Server server = new FirstRMI_Server();

 }
 catch (Exception e)
 {

 System.out.println(e.getMessage());
 }
 }

}

Client Program (FirstRMI_Client.java)

/*
**
 RMI Client program [FirstRMI_Client.java]

**
*/
import java.io.*;

import java.rmi.*;
import java.rmi.registry.*;
import java.net.*;

import java.applet.*;
import java.awt.*;
import java.net.URL;

/*
<applet code="FirstRMI_Client" width=300 height=100>
</applet>

*/
public class FirstRMI_Client extends Applet
{

 FirstRMI rmiServer;
 Registry registry;
 int port=1234;//this should be same as Server

 String msg=””;
 public void init(){
 try

 {
 registry=LocateRegistry.getRegistry(getCodeBase().getHost(),1234);
 rmiServer=(FirstRMI)(registry.lookup("rmiServer"));

 // call the remote method with the message
 msg=rmiServer.MyHello();
 }

 catch(RemoteException e){
 System.out.println(e.getMessage());
 }

Advanced JAVA Programming 5 - 10 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 catch(NotBoundException e){
 System.out.println(e.getMessage());
 }

 }
 public void paint(Graphics g) {
 g.drawString(msg, 25, 50);

 }
}

 5.10 Remote Object Activation

 The important task in RMI communication is to locate the remote objects.

 The remote objects can be located with the help of naming and directory services.
These services are run on the host machines whose name and port numbers are
known to the clients.

 RMI makes use of Java Naming and Directory Interface (JNDI) for locating the
remote clients.

 The RMI Registry exists for storing the names of the remote objects and RMI URL
for identifying the locations of objects over the network. Clients can acquire a
reference and get connected to a remote object. Using java.rmi.Naming class, client
connects to RMI Registries for the purposes of finding remote objects.

 The most important method that the class java.rmi.Naming which exposes is the
lookup() method. This method takes an RMI URL, connects to an RMI Registry on a
target java machine and returns a java.lang.Object representing the remote object.
The returned object is actually the remote stub. This stub can then be typecast into
our remote object's interface type. Refer following Fig. 5.10.1.

Fig. 5.10.1 Locating remote objects

 The URL is of the form
 rmi://<host>[:name_service_port]/<servicename>

Advanced JAVA Programming 5 - 11 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Where :
o <host> is the name of the host. It can be DNS name on internet.
o <name_service_port> specifies the name of the port on which the service is

running.
o <servicename> is the name of the service to which the remote object is associated

in the registry.

 Following are the steps followed in order to locate the remote object -

o Create a local object.

o Export that object to the listening service. The listening services are those
services that waits for listening the clients (these clients are those who demand
for some service).

o Registers the object in the RMI registry.

 The code for above these steps can be as follows -
 MyServer obj=new MyServer();
 Naming.rebind(“MyServer”,obj);

 Just similar to Naming class java.rmi.registry.LocateResitry using which the
reference for the registry can be obtained and then the registry can be started.
Following code is shows this -

 registry = LocateRegistry.createRegistry(port);

 registry.rebind("rmiServer", this);

 For granting the permission to the code to execute the security policy file is created
by Java.

 5.11 The Roles of Client and Server

 The stubs are the client side components and the skeletons are the server side
components.

 The stub/skeleton layer helps in transport of the data to remote reference layer by
marshalling and unmarshalling. The marshalling is a process of converting data or
object to byte stream and unmarshalling is the process of converting byte stream to
data or object. This conversion is done with the help of object serialization.

 The stub and skeleton layer is based on proxy design pattern. In the proxy design
pattern, the stub class acts as a proxy for the remote service implementation. The
skeleton class is a helper class and it allows the object to communicate with the
stub.

Advanced JAVA Programming 5 - 12 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 The skeleton communicates with the stub. It reads the parameters for method call
made by the client stub, then skeleton makes to the remote service implementation
object. Then the return value obtained from the remote service implementation is
accepted by the skeleton. The skeleton then writes back this value to the stub. The
proxy design pattern method calls occur through the proxy.

 Stub : The stub is a client side object that acts as a proxy for the remote object.
Following are the steps performed by the stub.

o Initiates the connection with the remote virtual machine. This virtual machine
contains the desired remote object.

o Marshals the parameters to the remote virtual machine. That means writes and
transmit data in the form of bytes to the remote VM.

o Unmarshals the return value or exception returned. That means the return value
returning from the remote object is taken back from byte stream to the data
stream format.

o This data value is then returned to the caller.

 The stub hides all these serialization of method and network communication. The
above scenario is presented to the caller as a simple invocation mechanism.

 Skeleton : The skeleton object communicates with the remote object. Following are
the steps performed by the skeleton.

o The stub marshals the parameters of remote method and these method
parameters are unmarshaled (read) by the skeleton.

o The skeleton then invokes the method on the actual remote object of the
implementation.

o Marshals the result obtained from the remote method implementation. It can be
return value or exception. That means the return value is converted to the byte
stream and transmitted over the RMI link to the client stub.

 5.12 Simple Client / Server Application using RMI

 For having remote method invocation following three programs are created -

1. Interface program in which the remote method is declared.

2. Server program in which remote method is defined.

3. Client program from which the remote method is called.

 For running the following program, you open two command-prompt windows one
for running server and other for running client.

Advanced JAVA Programming 5 - 13 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 5.12.1 Write a simple RMI application in which the client invokes the method of the
server.

Solution : Step 1 : We will write a simple interface in which the signature of method is
given. Following code can be written in a notepad and saved as FirstRMI.java.
import java.rmi.*;

public interface FirstRMI extends Remote
{
 void MyHello() throws RemoteException;

}

Note that the method named MyHello() will be defined in RMI server and RMI client
will invoke this method.

Step 2 : Following is a simple code that can be written in notepad for RMI Server. The
filename is FirstRMI_Server.java.
/*
**

 RMI Server program [FirstRMI_Server.java]
**
*/

import java.rmi.*;
import java.rmi.registry.*;
import java.rmi.server.*;

import java.net.*;

public class FirstRMI_Server extends

java.rmi.server.UnicastRemoteObject implements FirstRMI
 {
 String address;

 Registry registry;
 int port=1234; //this is a server port
 //use the same port number for client

 //so that the communication can be possible

 public void MyHello() //Definition of remote method

 {
 System.out.println("Hello Friends!!!");

 }

 public FirstRMI_Server() throws RemoteException

 {
 try
 {

Remote method

MyHello is defined

here.

Advanced JAVA Programming 5 - 14 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 address = (InetAddress.getLocalHost()).toString();
 }
 catch(Exception e)

 {
 System.out.println(e.getMessage());
 }

 System.out.println("Server started at: " + address + ", "+port);
 System.out.println("[Now run client with same IP address]");
 //creating the registry

 registry = LocateRegistry.createRegistry(port);
 registry.rebind("rmiServer", this);
 }

 static public void main(String args[])
 {
 try

 {
 FirstRMI_Server server = new FirstRMI_Server();
 }

 catch (Exception e)
 {
 System.out.println(e.getMessage());

 }
 }
}

Step 3 : The RMI client code is basically to invoke the server method. Following is a
client code that invokes the method stored in RMI server. This code can also be written in
Notepad and the file name for this code is FirstRMI_Client.java.
/*
**
 RMI Client program [FirstRMI_Client.java]
**
*/
import java.io.*;
import java.rmi.*;
import java.rmi.registry.*;
import java.net.*;

public class FirstRMI_Client
{
 static public void main(String args[])
 {
 FirstRMI rmiServer;
 Registry registry;
 String IP_Add=args[0];

Advanced JAVA Programming 5 - 15 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 int port=1234;//this should be same as Server
 System.out.println("Invoking the server's method");
 try
 {
 registry=LocateRegistry.getRegistry(IP_Add,port);
 rmiServer=(FirstRMI)(registry.lookup("rmiServer"));
 // call the remote method with the message
 rmiServer.MyHello();//remote method is called
 }
 catch(RemoteException e)
 {
 System.out.println(e.getMessage());
 }
 catch(NotBoundException e)
 {
 System.out.println(e.getMessage());
 }
 }
}

Step 4 : Now open the two command prompts. On and get the output as follows -

Program explanation :

 In this application we have first created an interface file. In this interface the

signature of the remote method is stored. Note that every RMI interface file in Java

imports java.rmi.*;

 The interface class is inherited from the Remote interface of java.rmi package. Then

the method is declared by throwing the RemoteException.

Advanced JAVA Programming 5 - 16 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 The server class extends the UnicastRemoteObject class. This is a class in the
java.rmi.server package that extends the java.rmi.server.RemoteServer, which
itself extends java.rmi.server.RemoteObject. This is the base class for all RMI
objects.

 In the RMI server program the registry is created using the code. The createRegistry
method is invoked using the object LocateRegistry.

 registry = LocateRegistry.createRegistry(port);

 Then registry is bind to the RMI server.

 The RMI Client program obtains the reference to the registry by following
command -

 registry=LocateRegistry.getRegistry(IP_Add,port);

 Then the bound RMI server is searched for using the lookup method.
 rmiServer=(FirstRMI)(registry.lookup("rmiServer"));

 Then the actual method stored in the server is invoked.
 rmiServer.MyHello();//remote method is called

 Thus client invokes the server’s method using RMI.

 Example 5.12.2 Write a RMI application in which the client can send a message to the server.

Solution : Java Program [My_Interface.java]

/*

**

 RMI Interface program

**

*/

import java.rmi.*;

public interface My_Interface extends Remote

{

 void My_Message(String str) throws RemoteException;

 //this method is defined in server and called from the client

}

/*
**
 RMI Server program [RMI_Server.java]
**

*/

import java.rmi.*;

import java.rmi.registry.*;
import java.rmi.server.*;

The inteface must
extend Remote

And must throw an

exception

Advanced JAVA Programming 5 - 17 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

import java.net.*;
public class RMI_Server extends
java.rmi.server.UnicastRemoteObject implements My_Interface
 {
 String address;
 Registry registry;
 int port=1234; //this is a server port
 //use the same port number for client
 //so that the communication can be possible
 public void My_Message(String str) //Definition of remote method
 {
 //This function converts the client's message to upper case
 String Capital_str;
 Capital_str=str.toUpperCase(); //received message is capitalized
 System.out.println(Capital_str);//an displayed on server console
 }
 public RMI_Server() throws RemoteException
 {
 try
 {
 address = (InetAddress.getLocalHost()).toString();
 }
 catch(Exception e)
 {
 System.out.println(e.getMessage());
 }
 System.out.println("Server started at: " + address + ", "+port);
 System.out.println("[Now run client with same IP address]");
 //creating the registry
 registry = LocateRegistry.createRegistry(port);
 registry.rebind("rmiServer", this);
 }
 static public void main(String args[])
 {
 try
 {
 RMI_Server server = new RMI_Server();
 }
 catch (Exception e)
 {
 System.out.println(e.getMessage());
 }
 }
}

Getting and IP address of Local

host

Created object for registry

Advanced JAVA Programming 5 - 18 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

/*
**
 RMI Client program [RMI_Client.java]
**
*/
import java.io.*;
import java.rmi.*;
import java.rmi.registry.*;
import java.net.*;

public class RMI_Client
{
 static public void main(String args[])
 {
 My_Interface rmiServer;
 Registry registry;
 BufferedReader input=new BufferedReader(new InputStreamReader(System.in));
 //Created for reading the input string from the console
 String IP_Add=args[0];
 int port=1234;//this should be same as Server
 String text="";
 try
 {
 System.out.println("enter some message...");
 text=input.readLine();
 }
 catch(IOException e)
 {
 System.out.println(e.getMessage());
 }
 System.out.println("sending " + text + " to " +IP_Add + ":" + port);
 try
 {
 registry=LocateRegistry.getRegistry(IP_Add,port);
 rmiServer=(My_Interface)(registry.lookup("rmiServer"));
 // call the remote method with the message
 rmiServer.My_Message(text);//remote method is called
 }
 catch(RemoteException e)
 {
 System.out.println(e.getMessage());
 }
 catch(NotBoundException e)

 {
 System.out.println(e.getMessage());

Using an interface

object, by having

registry lookup the

message is sent to the

server.

Asking user to enter some
message on console

Object for registry

Getting interface object

Advanced JAVA Programming 5 - 19 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 }
 }
}

Output

 Example 5.12.3 What is RMI ? Create a remote phone book server that maintains a file of

names and phone numbers and client allows the user to scroll through the file using RMI

concept.

Solution : RMI : The Remote Method Invocation is a technique in which the method
present on one machine can be invoked by another machine using some interface. Java
has a strong support for RMI feature.

In Java, the RMI Server stores the definition of the method and a client can call this
method using some interface. The interface is again a Java program in which the
declaration of this method is given.

Following is a simple phonebook application in which, we have created an interface
file named My_Interface.java. In this file we have declared a function GetPhNumber.
While declaring this function it is a must to throw RemoteException.

Advanced JAVA Programming 5 - 20 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

/*

**

 RMI Interface program

**

*/

import java.rmi.*;

public interface My_Interface extends Remote

{

 public String GetPhNumber(String str) throws RemoteException;

 //this method is defined in server and called from the client

}

Explanation :

 We have to compile this file in order to generate My_Interface.class file now the

RMI server program can be written in the following file. It is named as

RMIServer.java.

 In this program the definition of the function GetPhNumber is written. We

maintained two arrays for storing phone numbers and corresponding names in

Phone_number and name array respectively.

 Client sends the name which is compared by the server in the name array. If the

entry for that name is found then corresponding phone number is retrieved from

the Phone_number array and is returned to the client.
/*

**

 RMI Server program

**

*/

import java.io.*;

import java.rmi.*;

import java.rmi.registry.*;

import java.rmi.server.*;

import java.net.*;

public class RMIServer extends

java.rmi.server.UnicastRemoteObject implements My_Interface

{

Advanced JAVA Programming 5 - 21 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 String address;

 int flag=0;

 int i;

 String[] Phone_number=new

 String[]{"9812345671","9812345672","9812345673","98123456714","98123456715"};

 String[] name=new String[]{"Archana","Supriya","Shilpa","Sagar","Shivraj"};

 Registry registry;

 int port=1234; //this is a server port

 public String GetPhNumber(String str) //Definition of remote method

 {

 try

 for(i=0;i<5;i++)

 {

 if(str.equals(name[i]))

 {

 flag=1;

 System.out.println("Record is present");//an displayed on server console

 break;

 }

 }

 }

 catch(ArrayIndexOutOfBoundsException e){System.out.println(e.getMessage()); }

 if(flag==0)

 {

 // displayed on server console

 System.out.println("The Record is not present on the server");

 String msg="Record is not present in the phone book";

 i=0;

 return msg;

 }

 else

 return Phone_number[i];

 }//end of function GetPhNumber

Advanced JAVA Programming 5 - 22 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 public RMIServer() throws RemoteException

 {

 try

 {

 address = (InetAddress.getLocalHost()).toString();

 }

 catch(Exception e)

 {

 System.out.println(e.getMessage());

 }

 System.out.println("Server started at: " + address + ", "+port);

 System.out.println("[Now run client with same IP address]");

 //creating the registry

 registry = LocateRegistry.createRegistry(port);

 registry.rebind("rmiServer", this);

 }

 static public void main(String args[])

 {

 try

 {

 RMIServer server = new RMIServer();

 }

 catch (Exception e)

 {

 System.out.println(e.getMessage());

 }

 }//end of main

}//end of class

Explanation :

The client asks to enter the name of the person whose phone number needs to be
known. When user submits the name of the person, server returns it the phone number of
desired person. If the corresponding entry is not present then it simply returns “record is
not present” message. The client program is written in RMIClient.java file and compiled
to generate the RMIClient.class file.

Advanced JAVA Programming 5 - 23 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

/*

**

 RMI Client program

**

*/

import java.io.*;

import java.rmi.*;

import java.rmi.registry.*;

import java.net.*;

public class RMIClient

{

 static public void main(String args[])

 {

 My_Interface rmiServer;

 Registry registry;

 BufferedReader input=new BufferedReader(new InputStreamReader(System.in));

 //Created for reading the input string from the console

 String IP_Add=args[0];

 int port=1234;//this should be same as Server

 String text=" ";

 try

 {

 System.out.println("\n\n Enter the name of the person: ");

 text=input.readLine();

 }

 catch(IOException e)

 {

 System.out.println(e.getMessage());

 }

 try

 {

 registry=LocateRegistry.getRegistry(IP_Add,port);

 rmiServer=(My_Interface)(registry.lookup("rmiServer"));

 // call the remote method with the message

 System.out.println("Phone Number: "+rmiServer.GetPhNumber(text));//remote method is called

 }

 catch(RemoteException e)

 {

 System.out.println(e.getMessage());

 }

Advanced JAVA Programming 5 - 24 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 catch(NotBoundException e)

 {

 System.out.println(e.getMessage());

 }

 }

}

[Note : For the sake of understanding the output of the above application is as given
below. First execute the server and then start the client execution.]

Output

 Example 5.12.4 Explain the use of RMI in examination control system in which the server has

all the student information and the student objects can be accessed from any client.

Solution : This is a RMI application in which there are two entities RMI server and RMI
client. There is one more entity which is used by both the client and server and that is
interface.

We will write declarations of two methods in the interface file. One method is
returning the roll number of the student when client submits the student name. The other
method will return the marks of the student whose roll number is submitted by the client.
All the records of the students such as roll number, name and marks are stored on the
server.

Advanced JAVA Programming 5 - 25 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Fig. 5.12.1 RMI application

The code for this will be like this -

Step 1 : Java Program[RMI_Server.java]

/*

**
 RMI Server program
**

*/
import java.io.*;
import java.rmi.*;

import java.rmi.registry.*;
import java.rmi.server.*;
import java.net.*;

public class RMI_Server extends
java.rmi.server.UnicastRemoteObject implements My_Interface

{
 String address;
 int flag=0;

 int i;
 int[] roll_number=new int[]{1234,1235,1236,1237,1238};
 String[] name=new String[]{"Archana","Supriya","Shilpa","Sagar","Shivraj"};

 double[] marks=new double[]{73.33,66.44,55.50,44.2,67.99};
 Registry registry;
 int port=1234; //this is a server port

 public int My_Message(String str) //Definition of remote method
 {
 for(i=0;i<5;i++)

Advanced JAVA Programming 5 - 26 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 {
 if(str.equals(name[i]))
 {

 flag=1;
 System.out.println("Record is present");//an displayed on server console
 break;

 }
 }
 if(flag==0)

 System.out.println("The Record is not present on the server");//an displayed on server console
 return roll_number[i];
 }//end of MyMessage

//This is another function which returns marks of the student
 public double My_Message1(int Roll) //Definition of remote method

 {
 double stud_marks;
 int i,flag=0;

 for(i=0;i<5;i++)
 {
 if(Roll==roll_number[i])

 {
 flag=1;
 break;

 }
 }
 if(flag==0)

 {
 System.out.println("The record is not present");
 return -99; //means record is not present

 }

 else

 {
 stud_marks=marks[i];
 return stud_marks;

 }
 }//end of MyMessage1

 public RMI_Server() throws RemoteException
 {
 try

 {
 address = (InetAddress.getLocalHost()).toString();

Advanced JAVA Programming 5 - 27 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 }
 catch(Exception e)
 {

 System.out.println(e.getMessage());
 }
 System.out.println("Server started at: " + address + ", "+port);

 System.out.println("[Now run client with same IP address]");
 //creating the registry
 registry = LocateRegistry.createRegistry(port);

 registry.rebind("rmiServer", this);
 }

 static public void main(String args[])
 {

 try
 {
 RMI_Server server = new RMI_Server();

 }
 catch (Exception e)
 {

 System.out.println(e.getMessage());
 }
 }

}

Step 2 :

/*

**
 RMI Client program
**

*/

import java.io.*;

import java.rmi.*;
import java.rmi.registry.*;
import java.net.*;

public class RMI_Client
{

 static public void main(String args[])
 {
 My_Interface rmiServer;

 Registry registry;

Advanced JAVA Programming 5 - 28 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 BufferedReader input=new BufferedReader(new InputStreamReader(System.in));
 //Created for reading the input string from the console
 String IP_Add=args[0];

 int port=1234;//this should be same as Server
 String text=" ";
 String roll_text=" ";

 try
 {
 System.out.println("\n\n Enter the name of the student whose roll number is need to be known ...");

 text=input.readLine();
 }
 catch(IOException e)

 {
 System.out.println(e.getMessage());
 }

 try
 {
 registry=LocateRegistry.getRegistry(IP_Add,port);

 rmiServer=(My_Interface)(registry.lookup("rmiServer"));
 // call the remote method with the message
 System.out.println("The Roll Number of the student is "+rmiServer.My_Message(text));//remote
method is called

 try
 {
 System.out.println("\n\n Enter the Roll number of the student whose marks need to be known ...");

 roll_text=input.readLine();
 }
 catch(IOException e)

 {
 System.out.println(e.getMessage());
 }

 System.out.println("The marks the student are
"+rmiServer.My_Message1(Integer.parseInt(roll_text)));//remote method is called

 }

 catch(RemoteException e)
 {
 System.out.println(e.getMessage());

 }
 catch(NotBoundException e)
 {

 System.out.println(e.getMessage());
 }
 }

 }

Advanced JAVA Programming 5 - 29 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 3 :

/*

**

 RMI Interface program

**

*/

import java.rmi.*;

public interface My_Interface extends Remote

{

 public int My_Message(String str) throws RemoteException;

 public double My_Message1(int Roll) throws RemoteException;

 //this method is defined in server and called from the client

}

Step 4 : Open up two separate command prompt and compile server program first and
then the client program. Following sort of output can be obtained -

Review Question

1. What are the different ways of parameter passing in RMI ?

 5.13 Multiple Choice Questions

1. RMI stands for _____.

 a Routine modification Interface

 b Remote Method Interval

 c Remote Method Interface

 d Remote Method Invocation

Advanced JAVA Programming 5 - 30 Remote Method Invocation (RMI)

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

2. _____ package is used for remote method invocation.

 a java.lang b java.util

 c java.rmi d java.io

3. In RMI communication the object used at the client side is called as _____ .

 a skeleton b stub

 c interface d class

4. An RMI Server is responsible for _______.

 a creating an instance of the remote object

 b exporting the remote object

 c binding the instance of the remote object to the RMI registry.

 d all of these

5. In RMI architecture which layer intercepts method calls made by the client/redirects

these calls to a remote RMI service ?

 a Stub & Skeleton layer b Application layer

 c Remote Reference layer d Transport layer

Answer Keys for Multiple Choice Questions :

Q.1 d Q.2 c Q.3 b Q.4 d Q.5 a

(6 - 1)

UNIT VI

6 Networking

Syllabus
The java.net package, Connection oriented transmission - Stream Socket Class, creating a Socket to
a remote host on a port (creating TCP client and server), Simple Socket Program Example.
InetAddress, Factory Methods, Instance Methods, Inet4Address and Inet6Address, TCP/IP Client
Sockets. URL, URLConnection, HttpURLConnection, The URI Class, Cookies, TCP/IP Server
Sockets, Datagrams, DatagramSocket, DatagramPacket, A Datagram Example. Connecting to a
Server, Implementing Servers, Sending EMail, Servlet overview - the Java web server - The Life
Cycle of a Servlet, your first servlet.

Contents

6.1 The java.net Package

6.2 Socket Class

6.3 InetAddress

6.4 URL

6.5 URLConnection

6.6 HttpURLConnection

6.7 The URI Class

6.8 Cookies

6.9 TCP,IP and UDP

6.10 TCP/IP Client Sockets

6.11 TCP/IP Server Sockets

6.12 Datagrams

6.13 Sending Email

6.14 Servlet Overview

6.15 Handling HTTP Requests and Response

6.16 Multiple Choice Questions

Advanced JAVA Programming 6 - 2 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.1 The java.net Package

 6.1.1 The Networking Classes and Interfaces

The java.net package is for providing the useful classes and interfaces for networking
applications which are used in sockets and URL. These are as given below -

Classes

Name Description

ContentHandler This class is a superclass of all the classes that read the data from a class

URLConnection. It also builds the appropriate local object based on MIME

types.

DatagramSocket This class represents the Datagram Socket (UDP socket).

DatagramPacket This class represents the Datagram Packet (UDP packets for containing data).

InetAddress This class represents the IP address.

InetSocketAddress The IP socket address is a combination of IP address and port number. To

implement such IP socket address this class is used.

ServerSocket For implementing serverside sockets this class is useful.

Socket For implementing client side sockets this class is useful.

SocketAddress This class helps to represent the socket address without specification of

protocol.

URL This class is for creating a reference of uniform resource locator which points to

WWW.

URI This class provides the object of uniform resource identifier.

URLConnection For establishing a communication between application program and URL this

class is used.

Interfaces

Name Description Some methods

ContentHandlerFactory This interface is for defining the

factory for content handlers.

createContentHandler(string

MIME_type)-Creates

ContentHandler.

Advanced JAVA Programming 6 - 3 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

SocketImplFactory This interface is for defining the

factory for implementing the

sockets.

createSocketImpl()- Creates a new

instance for implementing socket.

URLStreamHandlerFactory For implementing URL stream

protocol handlers the factory can

be defined by this interface.

createURLStreamHandler (String p)-

For specific protocol ‘p’ a new

URLStreamHandler instance can

be created by this method.

Review Question

1. Explain networking classes and interfaces.

 6.2 Socket Class

 Socket is the most commonly used term in network programing. Socket provides
the way by which the computers can communicate using connection oriented or
connection less communication.

 Definition of socket : A socket is basically an endpoint of a two-way
communication link between two programs running on the network. It is OS-
controlled interface into which the applications can send or receive messages to
and fro from another application.

 The java.net.Socket class represents the socket.

 Two key classes are used to create the socket.

i) ServerSocket

ii) Socket

 A server program creates a specific type of socket that is used to listen for client
requests (server socket), In the case of a connection request, the program creates a
new socket through which it will exchange data with the client using input and
output streams.

 The ServerSocket can be created with the help of port number. For example
 ServerSocket server_socket=new Socket(1234);

 The Socket object can be created with the help of hostname and port number. The
general syntax of socket instantiation is

 Socket client= new Socket(serverName, portNumber);

For example
 Socket client_socket=new Socket(“myserver”,1234);

Advanced JAVA Programming 6 - 4 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The ServerSocket listens the client using the accept method. For example

 Socket Listen_socket=server_socket.accept();

There are two types of sockets -

i) TCP sockets : These are denoted by streams.

ii) UDP sockets : These are denoted by datagrams.

 6.2.1 Client Server

 In client server communication, there are 3 components.

1) Client PC or web client

2) An application server or web server

3) A database server.

Working

Step 1 : The client PC or web client submits the request for desired web page to the web
server.

Step 2 : The work of server is distributed among application server and database servers.
Application server possess the required communication functions.

Step 3 : The data required by this business logic is present on database server. The
required data is returned to application servers.

Step 4 : The web server or application server prepares the response page and sends it to
the web client.

Fig. 6.2.1 Client server communication

Advanced JAVA Programming 6 - 5 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.2.2 Reserved Sockets

 In network programming, the port is a medium through which one application
establishes connection with other application by binding socket using port number.

 With the help of port number and some additional information data is transferred
from client to server or from server to client.

 There are some ports which are reserved for specific service. These ports are called
as reserved ports.

 Various port numbers specifying their services are given in the following table

Port number Service

21 FTP

23 Telnet

25 SMTP

80 HTTP

110 POP3

 User level processes or services generally use port numbers >=1024.

Role of port in socket programming

 A server runs on specific computer and has a socket that is bound to specific port.
Here the port number must be other than the reserved port numbers. Usually it is
>=1024. For example - If I use port number 1122 for client server communication
then it is a valid port number. But if I make use of port number 110 then it is not
valid as POP3 service makes use of this number.

 The server waits and listen to the socket for a client to listen.

 The client makes a connection request knowing the hostname and port number on
which server is listening.

 The client binds to its local port number that it will use during this connection.

Fig. 6.2.2

Advanced JAVA Programming 6 - 6 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.2.3 Proxy Servers

What is proxy server ? : A proxy server is a server that sits between a client application
and a real server. It intercepts all requests to the real server to see if it can fulfill the
requests itself. If not, it forwards the request to the real server.

What is the purpose of having proxy server ?

1) It improves the performance by caching the information. To understand the
concept of caching consider a scenario -

 Suppose there are two users - user X and user Y access the World Wide Web
through a proxy server. First user X requests a certain web page, which we'll call
page 1. Sometime later, user Y requests the same page. Instead of forwarding the
request to the web server where page 1 resides, which can be a time-consuming
operation, the proxy server simply returns the page 1 that it already fetched for
user X. Since the proxy server is often on the same network as the user, this is a
much faster operation.

Fig. 6.2.3 Working of proxy server

2) It provides security and privacy. Because it prevents clients to access sensitive
information directly from the server.

 6.2.4 Internet Addressing

 Every computer on internet has address. This is called IP address or Internet
Protocol Address.

 This is unique 32 bit logical address divided into two main parts - Network Number
and Host number

Network Number Host Number

Advanced JAVA Programming 6 - 7 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 There are 5 classes based on two categories viz. A, B, C, D and E.

IP address
class

Format Range Purpose

Class A N.H.H.H 1 to 126 Very few large organizations use this class addressing.

Class B N.N.H.H 127 to 191 Medium size organizations use this addressing.

Class C N.N.N.H 192 to 223 Relatively small organizations use this class.

Class D – 224 to 239 This class address is used for multicast groups.

Class E – 240 to 254 This class addressing is reserved for experimental purpose.

 Here N stands for network number and H stands for host number. For instance in
class C first three octets are reserved for network address and last 8-bits denote host
address.

 IP address is assigned to the devices participating in computer network.

 The IP protocol makes use of this address for communication between two
computers.

 Using IP address particular node can be identified in the network.

 Review Questions

1. Give an overview of socket.
2. What is reserved port ?
3. What is proxy server ? Explain working of proxy server.
4. Explain internet addressing scheme.

 6.3 InetAddress

 The InetAddress class from java.net package represents the IP addresses.

 It works with either host name or numerical IP address of corresponding host.

 InetAddress class offers many useful methods for handling IP addresses and host
names.

 6.3.1 Factory Methods

 InetAddress class has no visible constructor. Hence to make use of InetAddress
object we need to use the factory methods.

 What is factory method ? Factory method is simply a convention whereby static
methods in a class return instance of that class.

Advanced JAVA Programming 6 - 8 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 There are three important factory methods from InetAddress class and those are

o getLocalHost

o getByName

o getAllByName

 Following program illustrates the use of getLocalHost() method -

 Example 6.3.1 Write a Java program to find the IP address of your machine.
Solution :

/***
This program make use of the method getLocalHost()
method for finding the IP address of local host machine.
***/
import java.net.*;
class InetAdd1
{
 public static void main(String args[]) throws UnknownHostException
 {
 InetAddress local_add=InetAddress.getLocalHost();
 System.out.println(“Local Host is: ”+local_add);
 }
 }

How to run above program ?

Open command prompt window and type following command
D:\test>javac InetAdd1.java
D:\test>java InetAdd1

Output

Local Host is: aap/192.168.0.166

Program explanation :

 When you run the above program you get the IP address of the local machine on
which you are running your program along with the host name. In above case,

1) aap is the name my machine on which I am running this program and
192.168.0.166 is my machine’s IP address.

2) Note that while running this program your machine should be in network. If it is
not in the networking (i.e. standalone machine) then you will get the output in
the following manner

 D:\test>javac InetAdd1.java
 D:\test>java InetAdd1
 Local Host is: aap/127.0.0.1

Advanced JAVA Programming 6 - 9 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Here 127.0.0.1 is a reserved IP address corresponding to the host computer which is
also known as loop-back address. 127.0.0.1 is used whenever program needs to
access a network running on the local computer itself.

3) One more important thing about the above Java program and that is definition of
main function. It should be

 public static void main(String args[]) throws UnknownHostException

That means, it is a must to throw an exception for unknown host in order to handle
unknown host situation. Hence precisely UnknownHostException should be thrown.

4) Our programs which makes use of the methods in InetAddress class must have
following statement at the beginning -

 Import java.net.*

Remember that it is java.net package only which deals with InetAddress class
functionalities.

 Example 6.3.2 Write a Java program to illustrate getByName() factory method.
Solution :

/***
This program shows the use of the method getByName
for getting the IP address for the corresponding host name
***/
import java.net.*;
class InetAdd2
{
 public static void main(String args[]) throws UnknownHostException
 {
 InetAddress addr =InetAddress.getLocalHost();
 System.out.println(addr);
 Address=InetAddress.getByName(“vtubooks.com”);
 System.out.println(addr);
 }
}

Output

D:\test>java InetAdd2
aap/192.168.0.166
vtubooks.com/202.137.237.142

While running the above program if your computer is not connected to internet then it
will generate following output [In fact here is the real use of throwing an exception].

Output

D:\test>javac InetAdd2.java

Advanced JAVA Programming 6 - 10 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

D:\test>java InetAdd2
aap/127.0.0.1

Exception in thread “main” java.net.UnknownHostException: vtubooks.com
at java.net.Inet4AddressImpl.lookupAllHostAddr(Native Method)
at java.net.InetAddress$1.lookupAllHostAddr(Unknown Source)
at java.net.InetAddress.getAddressFromNameService(Unknown Source)
at java.net.InetAddress.getAllByName0(Unknown Source)
at java.net.InetAddress.getAllByName(Unknown Source)
at java.net.InetAddress.getAllByName(Unknown Source)
at java.net.InetAddress.getByName(Unknown Source)
at InetAdd2.main(InetAdd2.java:8)

To avoid such dirty output we can slightly modify the above program as follows -

Java Program

/**
This program shows the use of the method getByName
for getting the IP address for the corresponding host name
***/
import java.net.*;
class InetAdd2
{
 public static void main(String args[]) throws UnknownHostException
 {
 try
 {
 InetAddress addr=InetAddress.getLocalHost();
 System.out.println(addr);
 Address=InetAddress.getByName(“vtubooks.com”);
 System.out.println(addr);
 }
 catch(UnknownHostException e)
 {
 System.out.println(e);
 }
 }
}

Output

D:\test>javac InetAdd2.java

D:\test>java InetAdd2
aap/127.0.0.1
java.net.UnknownHostException: vtubooks.com

Advanced JAVA Programming 6 - 11 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 6.3.3 Write a Java program to illustrate the factory method getAllByName().
Solution : This function is used to find the several machines that are associated with
single several IP addresses. There are some cases in which single domain name may be
associated with several machines. Here is an illustration
/***
This program shows the use of the method getAllByName
for getting all the IP addresses related to the same host name
***/
import java.net.*;
class InetAdd3
{
 public static void main(String args[]) throws UnknownHostException
 {
 InetAddress[]
 addr=InetAddress.getAllByName(“www.microsoft.com”);
 for(int i=0;i<addr.length;i++)
 System.out.println(addr[i]);
 }
}

Output

D:\test>javac InetAdd3.java
D:\test>java InetAdd3
www.microsoft.com/207.46.19.254
www.microsoft.com/207.46.192.254
www.microsoft.com/207.46.193.254
www.microsoft.com/207.46.19.190

We can obtain the host name from the IP address as well. In the following program the
IP address 192.168.0.166 is given as a string to the method getByName. And then using
getHostName method we can obtain the host name of corresponding machine.

 Example 6.3.4 Write a Java program to obtain name of the host machine using corresponding
IP address.

Solution :
/*
This program shows the use of IP address from which
the host name can be obtained

*/
import java.net.*;
class InetAdd4
{
 public static void main(String args[]) throws UnknownHostException

Advanced JAVA Programming 6 - 12 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 {
 InetAddress
 addr=InetAddress.getByName("192.168.0.166");
 System.out.println(addr.getHostName());
 }
}

Output

D:\test>javac InetAdd4.java
D:\test>java InetAdd4
aap

 6.3.2 Instance Methods

Instance methods are the methods that return something which can be used for object
or instances

InetAddress class encapsulates several useful instance methods that are listed below -

Method Description

String getHostName() It returns the name of the host.

boolean equals(object obj) If the address of obj equals to the address obtained from InetAddress

class, then this function returns true.

byte [] getAddress() It represents object’s internet address in the array of bytes form.

String toString() Returns a string that shows the host name and IP address.

String getHostAddress() Returns the address of host associated with object InetAddress class.

 6.3.3 Inet4Address and Inet6Address

 There are two new classes Inet4Address and Inet6Address introduced in Java 1.4
which are inheriting the basic InetAddress class.

 These classes are for supporting IPv4 and IPv6 respectively.
 Typically Java programmer is not concerned with IPv4 and IPv6 stuff because his

work area is restricted to application layer.
 For example - Consider the method

public boolean isIPv4CompatibleAddress()

this return true if InetAddress is an IPv4 compatible IPv6 address.

 Review Questions

1. Explain factory and instance methods.
2. What is IP4 and IP6 ?

Advanced JAVA Programming 6 - 13 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.4 URL

 For identifying the documents on the internet the uniform or universal resource
locator i.e. URL is used.

 There is variety of URL depending upon the type of resources.

 6.4.1 Format

 The general format of URL is -
 Scheme:Address

That is
 protocol://username@hostname/path/filename

 The scheme specifies the communication protocol. Different schemes have different
schemes have different forms of addresses.

 Various schemes that are used are http, ftp, gopher, file, mailto, news and so on.

 The most commonly used protocol for web browser and web server communication
is Hypertext Transfer Protocol(HTTP). This protocol is based on request-response
mechanism. This protocol handles the documents that are created using eXtensible
Hypertext Markup Language (XHTML). Using http the Address part of URL can be
written as follows -

 //Domain_name/path_to_Document

 file is another most commonly used scheme in URL. This protocol allows to reside
the document in the client's machine from which the web browser is making out the
demand. Due to this the actual document is not available only for its visibility but it
can be tested. Using file the Address part of URL can be written as follows -

 file://path-to-document

 The hostname is the name of the server computer that stores the web documents.

 The default port number for the http protocol is 80.

 Any URL does not allow the spaces in it. But there are some special characters that
can be present in the URL. These characters are - ampersand & or percentage % .

 6.4.2 The URL Path

 The path to the web document is similar to the path to the particular file present in
the folder. In this path the directory names and files are separated by the separator
characters. The character that is used as a separator is slash. Unix system uses
forward slash whereas the windows system makes use of backward slash.

Advanced JAVA Programming 6 - 14 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

For example -
 http://www.mywebsite.com/mydocs/index.html

 The URL path that includes all the directories along the path to the file is called the
complete path.

 Sometimes the base URL path is specified in the configuration file of the server. In
such a case we need not have to specify the complete path for accessing the
particular file such a path is called the partial path.

 For example -
 http://www.mywebsite.com

This indicates that the file mydocs/index.html is specified in the configuration file.

 6.4.3 The URL Class

 The Java's URL class has various constructors. These constructors throw the
exception MalformedURLException.

 The syntax to specify the URL constructor is as follows -
 URL(String URLString);
 URL(String protocolName, String hos, int port, String path)
 URL(String protocolName, String host, String path)

 Various methods in URL class that are commonly used in Java programs are -

Method Description

getProtocol() This method returns the name of the protocol which is typically used. Generally
http is the protocol being used.

getPort() It returns the port number. For http the port number is 80.

getHost() This method returns the host name.

getFile() This method returns the name of the file which we want to access.

Following is a simple Java program which makes use of URL class for obtaining the
protocol host name, file name being used in the URL.

 Example 6.4.1 Write a Java program to obtain the name of the protocol, port number, host
name and file name of the URL.

Solution :

import java.net.*;
class MyURLDemo
{
 public static void main(String args[])throws MalformedURLException
 {

Advanced JAVA Programming 6 - 15 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 URL obj=new URL("http://technicalpublications.org/index.php/");
 System.out.println("Protocol: " + obj.getProtocol());
 System.out.println("Port: " + obj.getPort());
 System.out.println("Host: " + obj.getHost());
 System.out.println("File: " + obj.getFile());
 }
}

Output

Protocol: http
Port: -1
Host: technicalpublications.org
File: /index.php/

Program explanation : We get the protocol name as http, the host name as the name of the
website and the corresponding file name. The port value as -1 indicates that it is not set
explicitly.

Review Question

1. What is URL ?

 6.5 URLConnection

 The class URLConnection is used for accessing the attributes of remote resource.
These attributes are exposed by the HTTP protocol.

 Using the OpenConnection() method of URL class we can examine the contents.
This method is used to establish the connection with some specific web site. Hence
to get the contents of the web page we used following statement -

 URLConnection handle_connection=handle.openConnection();

 Here handle_connection is an object of class URLConnection. Thus the
openConnection() method returns object of URLConnection.

 Using this object we can further get the access for desired webpage.

 Here is a sample java program which accepts the URL of some web site. Then using
openConnection() method we can get the information about that web page. This
information could be current date or content type (such as text/html or image/gif or
audio/midi and so on). In the following program we are displaying the contents of
the web page on command prompt. Just observe the output of this program
carefully.

Advanced JAVA Programming 6 - 16 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 6.5.1 Write a Java program to display the date, content-type, content length and
contents of a web page on command prompt.

Solution :
import java.net.*;

import java.io.*;
import java.util.Date;
class Get_Web_Page
{
 public static void main(String args[]) throws Exception
 {
 int ch;
 URL handle=new URL("http://www.yahoo.com");
 URLConnection handle_connection=handle.openConnection();
 long date_info;
 int length,i;
 date_info =handle_connection.getDate();
 System.out.println("Date: "+new Date(date_info));//Printing the current Date
 System.out.println("Content-Type: "+handle_connection.getContentType());
//printing the content types
 length=handle_connection.getContentLength();
 System.out.println("Content length: "+length);//printing the length of contents

 if(length!=0)
 {
 System.out.println("\n\t*******Contents of web page are*******\n\n");

 InputStream input_string=handle_connection.getInputStream();
 while((ch=input_string.read())!=-1)
 {

 System.out.print((char)ch); //printing web page contents

 }//end of while
 input_string.close();
 }//end of if
 else
 {
 System.out.println("There are no Contents for this site");
 }
 }//end of main
}//end of class

Advanced JAVA Programming 6 - 17 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

Date: Wed Feb 04 11:38:56 IST 2015
Content-Type: text/html
Content length: 1450
*******Contents of web page are*******

<!DOCTYPE html>
<html lang="en-us"><head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
 <meta charset="utf-8">
 <title>Yahoo</title>
….
….
….

 <h1 style="margin-top:20px;">Will be right back...</h1>
 <p id="message-1">Thank you for your patience.</p>
 <p id="message-2">Our engineers are working quickly to resolve the issue.</p>
 </td>
</tr>
</tbody></table>

</body></html>

Program explanation :

In above program we have used
 URL handle=new URL(“http://www.yahoo.com”);
 URLConnection handle_connection=handle.openConnection();

In order to connect to the web site “www.yahoo.com”.

The handle_connection is the object variable being used for this purpose. Then using
getDate() and getContentType() methods we can get the current date and content type
and this information is displayed on the console.

Then in order to read the contents of the web site we have to create one input stream
using InputStream with the help of following code -
 InputStream input_string = handle_connection.getInputStream();

Then using the read() function we can read the contents character by character manner
in the while loop.
 ch=input_string.read()

The output of this program shows the contents of the web page “www.yahoo.com”

Advanced JAVA Programming 6 - 18 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.6 HttpURLConnection

 The HttpURLConnection class is a subclass of the URLConnection class. It
provides support for HTTP-specific features. It allows you to read the web page
content, the return code, content type or MIME type and so on. The syntax for the
constructor of HttpURLConnection is as follows -

 HttpURLConnection(URL url)

Various methods that can be defined in HttpURLConnection class are as follows -

Method Meaning

 void connect() Connects to the server and issues the request.

 void disconnect() Closes all the connections to this server.

protected HTTPConnection
getConnection(URL url)

Returns an HTTPConnection.

static String
getDefaultRequestProperty(String name)

Gets the value for a given default request header.

 InputStream getInputStream() Gets an input stream from which the data in the
response may be read.

 OutputStream getOutputStream() Gets an output stream which can be used send an
entity with the request.

String getRequestMethod() Return the request method used.

String getRequestProperty(String name) Gets the value of a given request header.

int getResponseCode() Get the response code.

String getResponseMessage() Get the response message describing the response
code.

URL getURL() Gets the url for this connection.

void setRequestMethod(String method) Sets the request method .

void setRequestProperty(String name,
String value)

Sets an arbitrary request header.

String toString() produces a string.

Following is a simple Java program that makes use of HttpURLConnection class to
display the return code.

Advanced JAVA Programming 6 - 19 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

import java.io.IOException;
import java.net.HttpURLConnection;
import java.net.URL;

public class ReturnCodeDemo
{
 public static void main(String[] args) throws IOException
 {
 String urlstring = "http://www.yahoo.com";
 URL url = new URL(urlstring);
 int responseCode = ((HttpURLConnection) url.openConnection()).getResponseCode();
 System.out.println(responseCode);
 }
}

Various return code and their meanings are enlisted in the following table.

Return Code Meaning

200 Ok

301 Permanent redirect to another webpage

400 Bad request

404 Not found

 6.7 The URI Class

 URI stands for Uniform Resource Identifier. It is a string of characters used to
identify a name of a resource.

 The most common form of URI is the Uniform Resource Locator (URL), frequently
referred to informally as a web address.

 URLs constitute a subset of URIs. A URI represents a standard way to identify a
resource. A URL also describes how to access the resource.

 Following program makes use of URI class
import java.net.URI;
import java.net.URISyntaxException;

public class URIClassDemo
{
 public static void main(String[] args) throws NullPointerException, URISyntaxException
 {
 URI uri = new URI("http://www.techicalpublications.org");
 System.out.println("URI : " + uri);
 System.out.println("Authority : " + uri.getAuthority());

Advanced JAVA Programming 6 - 20 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 System.out.println("RawUserInfo : " + uri.getRawUserInfo());

 }
}

Output

URI : http://www.techicalpublications.org
Authority : www.techicalpublications.org
RawUserInfo : null

Review Question

1. Write short note on - URI class.

 6.8 Cookies

Cookies are some little information that can be left on your computer by the other
computer when we access an internet.

 Generally this information is left on your computer by some advertising agencies on
the internet. Using the information stored in the cookies these advertising agencies
can keep track of your internet usage. For the applications like on-line purchase
systems once you enter your personal information such as your name or your e-
mail ID then it can be remembered by these systems with the help of cookies.
Sometimes cookies are very much dangerous because by using information from
your local disk some malicious data may be passed to you. So it is upto you how to
maintain your own privacy and security.

 A cookie is a name-value pair information. This information is passed from server
to browser in response header. The browser then returns these cookies unchanged
to the server by including the state. By returning a cookie to a web server, the
browser provides the server a means of connecting the current page view with
previous page views. Use of session-ID in session tracking using the cookies can be
illustrated as follows -

Suppose we want to access web page
http://www.mywebpage.com/introduction.html, then the browser connects to the

server www.mywebpage.com by making a request.

Advanced JAVA Programming 6 - 21 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

The server then replies in the form of HTTP response. This packet contains a line
requesting browser to store cookies.

Using set-cookie statement server is requesting browser to store the sid=xf1234ad. So if
browser supports cookies then every subsequent page request to the same server will
contain the cookie.

This is another request to the same server. By including cookies which contain
sid=xf1234ad server knows that this request is related to the previous one. Thus server-
browser can keep track of current session.

 6.9 TCP,IP and UDP

TCP

 Transmission Control Protocol(TCP) is a connection-oriented, reliable protocol
which supports the transfer of data in continuous streams.

 This is called connection-oriented protocol because control information is sent
before transmitting any data. This process is sometimes called as handshaking.

 This is a reliable protocol because any data which when gets lost or corrupted, the
TCP has a provision to retransmit it. Because of these characteristics, TCP is used by
most internet applications. However, TCP requires a lot of overhead while coding
it.

Advanced JAVA Programming 6 - 22 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 The addressing scheme used in TCP is by means of ports. On separate ports the
communication can be established concurrently by the system. During this
communication, the server waits for the client to get connected to a specific port for
establishing communication. This type of communication is called as socket
programming.

IP

 Internet protocol is a major protocol in the TCP/IP suit.

 It is a connectionless, unreliable protocol which supports the transfer of data in the
form of packets.

 This is called connectionless protocol because it does not exchange any control
information before transmitting any data. The data is just sent to the destination
with a hope that it will reach at appropriate place.

 IP is known as an unreliable protocol because it does not have the provision of
retransmitting the lost packets or detect the corrupted data.

 The addressing scheme used in IP is by means of IP addresses. An IP address is a
32-bit unique number. IP addresses are generally written as four numbers, between
0 and 255, separated by period. Using the IP address defined in IP packet header,the
IP packets can be routed to its destination.

UDP

 The User Datagram Protocol (UDP) is a low-overhead protocol which can be used
as an alternative to TCP protocol.

 The UDP is a connectionless, unreliable protocol in which the data is passed in the
form of datagrams.

 This is called connectionless protocol because it does not exchange any control
information before transmitting any data. The data is just sent to the destination
with a hope that it will reach at appropriate place.

 UDP is known as an unreliable protocol because it does not have the provision of
retransmitting the lost datagram or detect the corrupted data.

 The addressing scheme used UDP is by means of ports. On separate ports the
communication can be established concurrently by the system. UDP ports are
distinct from the TCP port.

Advanced JAVA Programming 6 - 23 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Difference between TCP and UDP

Sr. No. TCP UDP

1. TCP stands for transmission control
protocol.

UDP stands for user datagram protocol.

2. It is a connection oriented protocol with

acknowledgement. When a file or message
send it will get delivered unless connections
fails. If connection lost, the server will
request the lost part. Hence it is called
reliable protocol.

It is a connectionless protocol without any
acknowledgement. When you send a data
or message, you don't know if it'll get
there, it could get lost on the way. Hence it
is called unreliable protocol.

3. The message will get transferred in an
orderly manner.

The message transfer have no order.

4. It is slower than UDP. It is a faster protocol.

5. When the low level parts of the TCP stream
arrive in the wrong order resend requests
have to be sent and all the out of sequence
parts have to be put back together so this
protocol is called heavyweight protocol.

No ordering of messages no tracking
connections. Hence UDP is called
lightweight protocol.

6. Examples : Email, FTP, Secure Shell protocol
makes use of TCP.

Example : Streaming media applications

such as movies, Voice Over IP(VOIP),
online multiplayer games makes use of
UDP.

Review Question

1. Differentiate TCP and UDP.

 6.10 TCP/IP Client Sockets

 A socket is bound to a port number so that the TCP/UDP from transport layer can
identify the corresponding application at destination.

Fig. 6.10.1

Advanced JAVA Programming 6 - 24 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 TCP sockets are denoted by streams and server is a device which has resources and
from which the services can be obtained. For example : There are various types of
servers such as web server which is for storing the web pages, there are print
servers for managing the printer services or there are database servers which store
the databases.

 Client is a device which wants to get service from particular server.
 First of all server starts and gets ready to receive the client connections. The server-

client communications occurs in following steps

Fig. 6.10.2 Client - Server communication

 There are two constructors used to create client socket -

Constructor Meaning

Socket(String hostName, int port)

Creates a socket connecting the local host to the named host

and port.

Socket(InetAddress ipAddress, int port) Creates a socket using a pre-existing InetAddress object and

a port.

 The methods used for examining the socket are -

InetAddress getInetAddress() Returns the InetAddress associated with the Socket object.

int getPort() Returns the remote port to which this Socket object is connected.

int getLocalPort() Returns the local port to which this.

Advanced JAVA Programming 6 - 25 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Whois

 Whois is a query and response protocol that is widely used for querying databases
that store the registered users of an Internet resource, such as a domain name, an IP
address block or an autonomous system.

 The protocol stores and delivers database content in a human readable format.

 The WHOIS protocol is a TCP-based protocol designed to work on the port 43.

Review Question

1. Explain steps used in socket programming.

 6.11 TCP/IP Server Sockets

 The ServerSocket class is used to create servers that listen to its clients.

 When ServerSocket is created, it will register itself with the system so that clients
can connect to it. This class throws exception IOException.

 Various ways by which ServerSocket can be created is as follows -
 ServerSocket(int port)
 ServerSocket(int port, int maxQueue)
 ServerSocket(int port, int maxQueue, InetAddress localAddress)

 Using the accept() method, the server initiates the communication with the client.

TCP socket programming

The socket programming includes two programs- one at the server side which is called
as server program and other at the client side which is called as client program.

Let us discuss various application programs based on server client communication
using TCP.

 Example 6.11.1 Write a TCP socket programming application in which client sends ‘Hello’
message to the server.

Solution :

Step 1 : The server program can be written on Notepad as follows -
/*
**
Server Program
**
*/
import java.io.*;
import java.net.*;
class Server

Advanced JAVA Programming 6 - 26 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

{
 public static void main(String args[]) throws Exception
 {
 ServerSocket server_socket=new ServerSocket(1234); //Step 1:Creating serversocket
 while(true)
 {
 Socket Listen_socket=server_socket.accept(); //Step 2: Server is ready to Listen on
 //ServerSocket
 BufferedReader client_input=new BufferedReader(new
 InputStreamReader (Listen_socket.getInputStream()));
 String client_str;
 client_str=client_input.readLine(); //Step 3: reading data from client in Client_str
 System.out.println(client_str); //Step 4:Displaying ‘Hello’ obtained from client
 }
 }
}

Step 2 : The client program can be written on the Notepad as follows -
/*
**
Client Program
**
*/
import java.io.*;
import java.net.*;
class Client
{
public static void main(String args[]) throws Exception
{

 Socket client_socket=new Socket(“aap”,1234); //Step 1: Creating socket for client
 BufferedReader user_input = new BufferedReader(new
 InputStreamReader(System.in));
 DataOutputStream server_out=new
 DataOutputStream(client_socket.getOutputStream());
 String Str;
 Str=user_input.readLine(); //step 2: Client reading ‘Hello’ message typed by user
 server_out.writeBytes(Str+"\n"); //Step 3: Client sending ‘Hello’ over the output stream of
 //server
 client_socket.close(); //Step 4: Closing client socket
}
}

Advanced JAVA Programming 6 - 27 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 3 : These two programs can be run on separate command-prompt windows so that
we can see the client-server communication getting established. Note that the server
program must be running before starting the client. Here is an illustrative output

Output

Program explanation :

Server program

 In the server program first two lines are
 import java.io.*;
 import java.net.*;

 The java.io package is required to support I/O operations. And for socket
programming java.net package is required because it contains the class Socket
which is required in our program. Socket class creates a stream socket and connects
it to a specific port at a specific IP address/hostname. Hence in the main() we have
written

 ServerSocket server_socket=new ServerSocket(1234);

Here aap is a host name of the machine on which the server is running and 1234 is the
port number. That means the server creates a socket server_socket for establishing the
connection with the client.

 The server creates another separate socket for listening to the client
 Socket Listen_socket=server_socket.accept();

Advanced JAVA Programming 6 - 28 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Thus only on Listen_socket server can listen to the client. Then comes
 BufferedReader client_input=new
 BufferedReader(newInputStreamReader(Listen_socket.getInputStream()));

 The BufferedReader is for creating the object client_input. We have used
getInputStream() method which returns an input stream from the other side of the
socket. The InputStreamReader takes getInputStream() as a parameter.

 Then in the string client_str the client message can be collected by a using a method
readLine() as follows

 String client_str;
 client_str=client_input.readLine();

 Then the message obtained from client is printed on the console using following
code

 System.out.println(client_str);

Client program

 Now let us discuss the client program. In client program we have to create a socket
for client as follows

 Socket client_socket=new Socket(“aap”,1234);

 When the client runs something must be typed on the console and that message will
be sent to the server.

 Using System.in we can get the input written on the console. Hence to get the
message typed by the user following declaration must be made

 BufferedReader user_input = new BufferedReader(new
 InputStreamReader(System.in));

 The BufferedReader object is created to read the input from keyboard.

 The InputStreamReader is for reading the stream input. We have send System.in as
a parameter to InputStreamReader. Then an output stream has to be created on
which the data can be sent to the server. Hence we declare server_out as an output
stream.

 DataOutputStream server_out=new
 DataOutputStream(client_socket.getOutputStream());

 The method getOutputStream() returns an output stream to the other side the
socket. Then using readLine() function we can read the message written on the
console.

 Str=user_input.readLine();

 The client then sends this message (collected in string Str) to the server using
writeBytes() method as follows

Advanced JAVA Programming 6 - 29 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 server_out.writeBytes(Str+"\n");

 Finally the client closes its connection by
 client_socket.close();

 Last but not the least, we have to throw some exception to handle the unknown host
or connection not getting established situation. Hence the main() method throws a
general exception Exception.

 Example 6.11.2 Write a TCP socket programming application in which client sends some
message to the server and server sends the acknowledgement to the client.

Solution :

Step 1 :

Server program

/**
 Server Program which sends acknowledgement to the client
**/
import java.io.*;
import java.lang.*;
import java.net.*;
class S
{
 public static void main(String args[]) throws Exception
{
 String str3;
 String str4;
 ServerSocket s2=new ServerSocket(1234);
while(true)
{
 Socket s3=s2.accept();
BufferedReader in_client=new BufferedReader(new InputStreamReader(s3.getInputStream()));
 DataOutputStream out_client=new DataOutputStream(s3.getOutputStream());
 str3=in_client.readLine();
 str4=str3+"—>Received"+’’\n’;
 out_client.writeBytes(str4);
 }
}
}

Step 2 :

Client program

/**
 Client Program
**/

Input Stream is created to send the

acknowledgment to the client.

Using writeBytes method the

acknowledgment is sent to client

Advanced JAVA Programming 6 - 30 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

import java.io.*;
import java.net.*;
class C
{
public static void main(String args[]) throws Exception
{
 String Str;
 String Str1;
 BufferedReader input_user = new BufferedReader(new
 InputStreamReader(System.in));
 Socket s1=new Socket(“aap”,1234);
 DataOutputStream out_server=new
 DataOutputStream(s1.getOutputStream());
 BufferedReader in_server=new BufferedReader(new
 InputStreamReader(s1.getInputStream()));
 Str=input_user.readLine();
 out_server.writeBytes(Str+"\n");
 Str1=in_server.readLine();
 System.out.println(“From server: ”+ Str1);
 s1.close();
}
}

Step 3 :
Output

Client reading the acknowledgment from the

server and printing it on its console

Advanced JAVA Programming 6 - 31 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 6.11.3 Write a client program to send any string from its standard input to the server
program. The server program reads the string, finds number of characters and digits and
sends it back to client program. Use connection-oriented or connection-less communication.

Solution : Following application makes use of connection oriented socket programming.

Step 1 : We will write a client program which accepts some string containing
alphanumeric string. This string is then sent to the server. The program is as follows -
/**
 Client Program
**/
import java.io.*;
import java.net.*;
class Client
{
public static void main(String args[]) throws Exception
{
 String Str=" ";
 String Str1;
 String Str2;
 Socket s1=new Socket("127.0.0.1",1234);
 try
 {
 System.out.println("Enter Some string...");
 while(true)
 {
BufferedReader input_user = new BufferedReader(new InputStreamReader(System.in));
 DataOutputStream out_server=new DataOutputStream(s1.getOutputStream());
BufferedReader in_server=new BufferedReader(new InputStreamReader(s1.getInputStream()));
 Str=input_user.readLine();
 out_server.writeBytes(Str+"\n");
 Str1=in_server.readLine(); //obtaining the from server
 Str2=in_server.readLine(); //obtaining the from server
 //displaying this count on client console
 System.out.println("Number of digits is "+Str1);
 System.out.println("Number of characters is "+Str2);
 s1.close();
 }//end of while
 }catch(Exception e){System.out.println(e.getMessage());}
 }

}

Advanced JAVA Programming 6 - 32 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Step 2 : Now we will write down some server program which will accept the string from
the client and count the total number of characters and digits into it. These counts will be
then returned to the client. The client program will display these counts. The server
program is follows -
/**
 Server Program
**/
import java.io.*;
import java.lang.*;
import java.net.*;
class Server
{
 public static void main(String args[]) throws Exception
 {
 ServerSocket s2=new ServerSocket(1234);
 String text=" ";
 int counts=0;
 int charcounts=0;
 System.out.println("\t\tServer started.....");
 while(true)
 {
 Socket s3=s2.accept();
 BufferedReader in_client=new BufferedReader(new InputStreamReader(s3.getInputStream()));
 DataOutputStream out_client=new DataOutputStream(s3.getOutputStream());
 text=in_client.readLine();//getting data from client
 System.out.println("Receiving data...");
 for(int i=0;i<text.length();i++)
 {
 if((text.charAt(i)>='0')&&(text.charAt(i)<='9'))
 counts++;
 }//end of for
 out_client.writeBytes(counts+"\n");//sending number of digits to client
 charcounts=text.length()-counts;
 out_client.writeBytes(charcounts+"\n");//sending number of characters to client
 System.out.println("Data is sent...");
 }//end of while
 }//end of main
}//end of class

Step 3 : Now open two command prompt windows to get the output. First execute the
server program and then the client program. The output is as follows -

Advanced JAVA Programming 6 - 33 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 6.11.4 Write a client server program using TCP where client sends a string and server
checks whether that string is palindrome or not and responds with appropriate message.

Solution :

Step 1 :

/**
 Client Program
**/
import java.io.*;
import java.net.*;
class Client_Pal
{
public static void main(String args[]) throws Exception
{
 String Str=" ";
 String Str1;
 int flag;
 Socket s1=new Socket("127.0.0.1",5000);
 try
 {
 System.out.println("Enter Some string...");
 while(true)
 {
BufferedReader input_user = new BufferedReader(new InputStreamReader(System.in));
DataOutputStream out_server=new DataOutputStream(s1.getOutputStream());
BufferedReader in_server=new BufferedReader(new InputStreamReader(s1.getInputStream()));
 Str=input_user.readLine();
 out_server.writeBytes(Str+"\n");
 Str1=in_server.readLine(); //obtaining the from server
 flag=Integer.parseInt(in_server.readLine()); //obtaining the from server

Advanced JAVA Programming 6 - 34 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 if(flag==1)
 System.out.println(Str1+" is Palindrome");
 else
 System.out.println(Str1+" is not palindrome");
 s1.close();
 }//end of while
 }catch(Exception e){System.out.println(e.getMessage());}
 }
}

Step 2 :

/**
 Server Program
**/
import java.io.*;
import java.lang.*;
import java.net.*;
class Server_Pal
{
 public static void main(String args[]) throws Exception
 {
 ServerSocket s2=new ServerSocket(5000);
 String str="",rev="";
 int flag;
 System.out.println("\t\tServer started.....");
 while(true)
 {
 Socket s3=s2.accept();
 BufferedReader in_client=new BufferedReader(new InputStreamReader(s3.getInputStream()));
 DataOutputStream out_client=new DataOutputStream(s3.getOutputStream());
 str=in_client.readLine();//getting data from client
 System.out.println("Receiving data...");
 int length = str.length();
 for (int i = length - 1; i >= 0; i--)
 rev = rev + str.charAt(i);
 if (str.equals(rev))
 flag=1;
 else
 flag=0;
 out_client.writeBytes(str+"\n");//sending string to client
 out_client.writeBytes(flag+"\n");//sending status of palindrome or not
 System.out.println("Data is sent...");
 }//end of while
 }//end of main
}//end of class

Advanced JAVA Programming 6 - 35 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.12 Datagrams

 A datagram is an independent, self-contained message sent over the network whose
arrival, arrival time and content are not guaranteed.

 It is a basic transfer unit associated with a packet-switched network. The
applications that communicate via datagrams send and receive completely
independent packets of information.

 The java.net package contains three classes to help you write Java programs that
use datagrams to send and receive packets over the network : DatagramSocket,
DatagramPacket, and MulticastSocket.

 An application can send and receive DatagramPackets through a DatagramSocket.
In addition, DatagramPackets can be broadcast to multiple recipients all listening to
a MulticastSocket.

 6.12.1 Datagram Packet

 The DatagramPacket is a message that can be sent or received.

 An application can send and receive DatagramPackets through a DatagramSocket.

 If you send multiple packets then these packets may arrive in any order. Moreover,
the delivery of packets is also not guaranteed.

Constructors used for DatagramPacket

 DatagramPacket(byte[] barr, int length) : It creates a datagram packet. This
constructor is used to receive the packets.

 DatagramPacket(byte[] barr, int length, InetAddress address, int port) : It creates a
datagram packet. This constructor is used to send the packets.

Methods

Here are some useful methods for UDP socket programming

Method Description

InetAddress getByName(String hostname) This method returns the IP address when the hostname is

given.

InetAddress getAddress() This method returns the IP address.

int getPort() It returns the port number.

Byte []getData() It returns the data containing in the datagram. This is

stored in the array of bytes.

int getLength() Returns the length of data obtained by getData method.

Advanced JAVA Programming 6 - 36 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.12.2 Datagram Server and Client

 Example 6.12.1 Write an UDP client and server program to send some message to the server
and server displays the received message on its console.

Solution :

/*

 UDP Client Program

*/
import java.io.*;
import java.net.*;
class UDPClient
{
 public static void main(String args[]) throws Exception
 {
 BufferedReader user_input=new BufferedReader(new
 InputStreamReader(System.in));
 //creating the client socket
 DatagramSocket client_socket=new DatagramSocket();
 //getting the IP address of host “aap”
 InetAddress IP_add=InetAddress.getByName(“aap”);
 //creating the buffer for sending the data
 byte out_data[]=new byte[1024];
 //reading the input through keyboard
 String str=user_input.readLine();
 out_data=str.getBytes();
 //creating the datagram packet in which data is
 //encapsulated
 DatagramPacket Packet1=new
 DatagramPacket(out_data,out_data.length,IP_add,1234);
 //sending the packet to the server
 client_socket.send(Packet1);
 //closing the client’s connection
 client_socket.close();
 }
}
/*

 UDP Server Program

*/
import java.io.*;
import java.net.*;

Advanced JAVA Programming 6 - 37 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

class UDPServer
{
 public static void main(String args[]) throws Exception
 {
 //creating the socket for server
 DatagramSocket server_socket=new DatagramSocket(1234);
 //array which reserves the input data getting from
 //client
 byte in_data[]=new byte[1024];
 while(true)
 {
 //creating the datagram packet
 DatagramPacket Packet2=new
 DatagramPacket(in_data,in_data.length);
 //the data from the client is received in the packet
 server_socket.receive(Packet2);
 String str=new String(Packet2.getData());
 //printing the received data on the console of server
 System.out.println(str);
 }
}
}

Output

Advanced JAVA Programming 6 - 38 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 6.12.2 Write UDP client and server program in which UDP client sends some
message to the server and server sends some another message to the client.

Solution :
/*

 UDP Client Program

*/
import java.io.*;
import java.net.*;
class UDPClient
{
public static void main(String args[]) throws Exception
{
 BufferedReader user_input=new BufferedReader(new
 InputStreamReader(System.in));
 //creating the client socket
 DatagramSocket client_socket=new DatagramSocket();
 //getting the IP address of host “aap”
InetAddress IP_add=InetAddress.getByName(“aap”);
 //creating the buffer for sending the data
 byte out_data[]=new byte[1024];
 byte in_data[]=new byte[1024];
 //reading the input through keyboard

 String str=user_input.readLine();
 out_data=str.getBytes();
 //creating the datagram packet in which data is
 //encapsulated
 DatagramPacket Packet1=new
 DatagramPacket(out_data,out_data.length,IP_add,1234);
 //sending the packet to the server
client_socket.send(Packet1);
 DatagramPacket Packet4=new
 DatagramPacket(in_data,in_data.length);
 //the data from the server is received in the packet
 client_socket.receive(Packet4);
 String receive_str=new String(Packet4.getData());
 //printing the received data on the console of client
 System.out.println(receive_str);
 //closing the client’s connection
 client_socket.close();
 }
}

Sending the data stored
in array out_data to the

server in Packet1

Receiving the data stored
in array in_data from the

server in Packet4

Advanced JAVA Programming 6 - 39 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

/*
**
 UDP Server Program
**
*/
import java.io.*;
import java.net.*;
class UDPServer
{
public static void main(String args[]) throws Exception
{
//creating the socket for server
DatagramSocket server_socket=new DatagramSocket(1234);
BufferedReader server_input=new BufferedReader(new InputStreamReader(System.in));
InetAddress IP_add=InetAddress.getByName(“aap”);
//array which reserves the input data getting from client
byte in_data[]=new byte[1024];
byte out_data[]=new byte[1024];
while(true)
{
//creating the datagram packet
DatagramPacket Packet2=new
DatagramPacket(in_data,in_data.length);
//the data from the client is received in the packet
server_socket.receive(Packet2);
String str=new String(Packet2.getData());
//printing the received data on the console of server
System.out.println(str);

InetAddress IP_add1=Packet2.getAddress();
int port=Packet2.getPort();
String send_str=server_input.readLine();
out_data=send_str.getBytes();
DatagramPacket Packet3=new
DatagramPacket(out_data,out_data.length,IP_add1,port);
//sending the packet to the client
server_socket.send(Packet3);
}
}
}

Receiving the data stored
in array in_data from the

client in Packet2

Sending the data stored
in array out_data to the

client in Packet3

Advanced JAVA Programming 6 - 40 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Output

 Example 6.12.3 Write an UDP client and server program to do the following :

Client send any string and server respond with its capital string.
Solution :

/*
**
UDP Client Program[UDPClient.java]

*/
import java.io.*;
import java.net.*;
class UDPClient
{
 public static void main(String args[]) throws Exception
 {
 BufferedReader user_input=new BufferedReader(new
 InputStreamReader(System.in));
 //creating the client socket
 DatagramSocket client_socket=new DatagramSocket();
 //getting the IP address of host “aap”
 InetAddress IP_add=InetAddress.getByName(“localhost”);
 //creating the buffer for sending the data
 byte out_data[]=new byte[1024];
 //reading the input through keyboard
 String str=user_input.readLine();

Advanced JAVA Programming 6 - 41 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 out_data=str.getBytes();
 //creating the datagram packet in which data is
 //encapsulated
 DatagramPacket Packet1=new
 DatagramPacket(out_data,out_data.length,IP_add,1234);
 //sending the packet to the server
 client_socket.send(Packet1);
 //closing the client’s connection
 client_socket.close();
 }
}
/*
**
UDP Server Program[UDPServer.java]

*/
import java.io.*;
import java.net.*;
class UDPServer
{
 public static void main(String args[]) throws Exception
 {
 //creating the socket for server
 DatagramSocket server_socket=new DatagramSocket(1234);
 //array which reserves the input data getting from
 //client
 byte in_data[]=new byte[1024];
 while(true)
 {
 //creating the datagram packet
 DatagramPacket Packet2=new
 DatagramPacket(in_data,in_data.length);
 //the data from the client is received in the packet
 server_socket.receive(Packet2);
 String str=new String(Packet2.getData());
 //printing the received data on the console of server

 System.out.println(str.toUpperCase());
 }
}
}

Advanced JAVA Programming 6 - 42 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Example 6.12.4 Write a UDP client-server program in which the client sends any string and
server responds with reserve string.
Solution : Client program

import java.io.*;
import java.net.*;
class UDPClient
{
 public static void main(String args[]) throws Exception
 {
 BufferedReader user_input=new BufferedReader(new InputStreamReader (System.in));
 //creating the client socket
 DatagramSocket client_socket=new DatagramSocket();
 //getting the IP address of host "aap"
 InetAddress IP_add=InetAddress.getByName("localhost");
 //creating the buffer for sending the data
 byte out_data[]=new byte[1024];
 //reading the input through keyboard
 String str=user_input.readLine();
 out_data=str.getBytes();
 //creating the datagram packet in which data is
 //encapsulated
 DatagramPacket Packet1=new DatagramPacket(out_data,out_data.length,IP_add,1234);
 //sending the packet to the server
 client_socket.send(Packet1);
 //closing the client's connection
 client_socket.close();
 }
}

Server Program

import java.io.*;
import java.net.*;
class UDPServer
{
 public static void main(String args[]) throws Exception
 {
 //creating the socket for server
 DatagramSocket server_socket=new DatagramSocket(1234);
 //array which reserves the input data getting from
 //client
 byte in_data[]=new byte[1024];
 while(true)
 {

Advanced JAVA Programming 6 - 43 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 //creating the datagram packet
 DatagramPacket Packet2=new DatagramPacket(in_data,in_data.length);
 //the data from the client is received in the packet
 server_socket.receive(Packet2);
 String str=new String(Packet2.getData());
 //printing the received data on the console of server
 String reverse="";
 int length = str.length();
 for (int i = length - 1 ; i >= 0 ; i--)
 reverse = reverse + str.charAt(i);
 System.out.println("Reverse of entered string is: "+reverse);
 }
}
}

 6.13 Sending Email

The email can be sent is a three step process.

1. Get the session object

 There are two methods of javax.mail.Session class that can be used to get the
session object.

 These are - Session.getDefaultInstance() and Session.getInstance() method.

 The getDefaultInstance method returns the default session and the getInstance
returns the new session.

2. Compose the message

 For composing the message the javax.mail.Message class is used. But it is an
abstract class so its subclass javax.mail.internet.MimeMessage class is used.

 While creating the message, we need to pass session object in MimeMessage class
constructor. The following code can be used for that purpose

 MimeMessage message=new MimeMessage(session);

 Thus the message object is created. We will now use the methods of MimeMessage
class that allow is to build the message for email.

1. public void setFrom() This method is used to set the address of the sender.

2. public void addRecipient() This method is used to add the address of the recipient.

3. public void setSubject() This method is used to set the subject header field.

4. public void setText() This method is used to set the text as the message content.

Advanced JAVA Programming 6 - 44 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

3. Send the message

 The send() method of javax.mail.Transport class is used to send the email.

 For executing the following program we need to use two jar files namely,
activation.jar and mail.jar

Example Program

import java.util.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.activation.*;

public class SendEmailDemo
{
 public static void main(String [] args){
 String to = "puntambekar.a@gmail.com";
 String from = "puntambekar.a@gmail.com";
 String host = "localhost";

 //Get the session object

 Properties properties = System.getProperties();
 properties.setProperty("mail.smtp.host", host);
 Session session = Session.getDefaultInstance(properties);

 //compose the message

 try{
 MimeMessage message = new MimeMessage(session);
 message.setFrom(new InternetAddress(from));
 message.addRecipient(Message.RecipientType.TO,new InternetAddress(to));
 message.setSubject("This is a subject");
 message.setText("Hello, how are you?");

 // Send message

 Transport.send(message);
 System.out.println("message sent successfully....");

 }catch (MessagingException ex) {ex.printStackTrace();}
 }
}

Advanced JAVA Programming 6 - 45 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.14 Servlet Overview

 Servlets are basically the Java programs that run on server. These are the programs
that are requested by the XHTML documents and are displayed in the browser
window as a response to the request.

 The servlet class is instantiated when web server begins the execution.

 The execution of servlet is managed by servlet container, such as Tomcat.

 The servlet container is used in java for dynamically generate the web pages on the
server side. Therefore the servlet container is the part of a web server that interacts
with the servlet for handling the dynamic web pages from the client.

 Servlets are most commonly used with HTTP (i.e. Hyper Text Transfer Protocol)
hence sometimes servlets are also called as "HTTP Servlet".

 The main purpose of servlets is to add up the functionality to a web server.

 6.14.1 The Java Web Server

 Before learning the actual servlet programming it is very important to understand
how servlet works. (Refer Fig. 6.14.1)

Fig. 6.14.1 How servlet works ?

1. When a client make a request for some servlet, he/she actually uses the Web
browser in which request is written as a URL.

2. The web browser then sends this request to Web server. The web server first
finds the requested servlet.

3. The obtained servlet gathers the relevant information in order to satisfy the
client’s request and builds a web page accordingly.

4. This web page is then displayed to the client. Thus the request made by the
client gets satisfied by the servlets.

Advanced JAVA Programming 6 - 46 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 6.14.2 Advantages of using Servlets

 The servlets are very efficient in their performance and get executed in the address
space of the belonging web server.

 The servlets are platform independent and can be executed on different web
servers.

 The servlets working is based on Request-Response. Any HTML form can take the
user input and can forward this input to the servlet. The servlets are then
responsible to communicate with the back-end database and manipulate the
required business logic. These servlets embedded on the web servers using Servlets
API.

 Servlets provide a way to generate the dynamic document. For instance : A servlet
can display the information of current user logged in, his logging time, his last
access, total number of access he made so far and so on.

 Multiple users can keep a co-ordination for some application among themselves
using servlets.

 Using servlets multiple requests can be synchronized and then can be concurrently
handled.

 6.14.3 The Life Cycle of a Servlet

 In the life cycle of servlet there are three important methods. These methods are,

 1. Init 2. Service 3. Destroy

Fig. 6.14.2 Life cycle of servlet

 The client enters the URL in the web browser and makes a request. The browser
then generates the HTTP request and sends it to the Web server. (Refer Fig. 6.14.2)

 Web server maps this request to the corresponding servlet.

1. Init() Method : The server basically invokes the init() method of servlet. This
method is called only when the servlet is loaded in the memory for the first time.
Using this method initialization parameters can also be passed to the servlet in
order to configure itself.

Advanced JAVA Programming 6 - 47 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

2. service() Method : Server can invoke the service for particular HTTP request
using service() method. The servlets can then read the data provided by the
HTTP request with the help of service() method.

3. destroy() Method : Finally server unloads the servlet from the memory using
the destroy() method.

 6.14.4 Your First Servlet

 When we write a servlet program, it is necessary to -

i) Either implement Servlet interface or

ii) Extend a class that implements Servlet interface.

 While implementing Servlet interface we must include javax.servlet package.
Hence the first line in out servlet program must be

 import javax.servlet.*;

 GenericServlet class is a predefined implementation of Servlet interface. Hence we
can extend GenericServlet class in our servlet program. Similarly, the HttpServlet
class is a child class of GenericServlet class, hence we can extend this class as well
while writing the servlet program.

 Hence following are the two ways by which we can write servlet program
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
public class Test extends
GenericServlet
{
 //body of servlet
}

 import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
public class Test extends HttpServlet
{
 //body of servlet
}

 The servlet gets the request from the client for some service. The servlet then
processes the request and sends the response back to the client. In order to handle
these issues HttpServletRequest and HttpServletResponse are used in servlet
program.

 These requests are handled with the help of some methods that are popularly
known as methods of HttpServlet. These methods are as follows

Method Purpose

doGet This method handles the HTTP GET request

doPost This method handles the HTTP POST request

Advanced JAVA Programming 6 - 48 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

doPut This method handles the HTTP Put request.

doDelete This method handles the DELETE request.

The doGet and doPost methods

 The doGet method requests the data from the source.

 The doPost method submits the processed data to the source.

 The protocol of doGet method is as follows
 protected void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException,IOException

o The ServletException and IOException are thrown to handle the Servlet
problems gracefully.

o The HttpServletRequest request : Contain the client request made by client.

o The HttpServletResponse response : Contains the response made by servlet
back to the client.

 The protocol of doPost method is same as doGet method. It is as follows -
protected void doPost(HttpServletRequest request, HttpServletResponse response) throws
ServletException,IOException

 The GET request is more efficient than the POST request.

 The GET request is less secure than the POST request.

How to Write Servlet Program ?

Open Notepad and write the first servlet code to display Greeting messages. It is as
follows

FirstServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FirstServlet extends HttpServlet
{
 public void doGet(HttpServletRequest request,HttpServletResponse response)
 throws IOException,ServletException
 {
 response.setContentType("text/html");
 PrintWriter out=response.getWriter();
 out.println("<html>");
 out.println("<head>");
 out.println("<title>My First Servlet</title>");

Advanced JAVA Programming 6 - 49 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 out.println("<body>");
 out.println("<h1>Hello How are U?</h1>");
 out.println("<h2>I am enjoying this Servlet Application</h2>");
 out.println("<h3>See You later!</h3>");
 out.println("</body>");
 out.println("</html>");
}
}

Program Explanation :

 In the above program, we have imported following files,
 import java.io.*;
 import javax.servlet.*;
 import javax.servlet.http.*;

 Out of these files java.io package is useful for taking care of I/O operations.

 The javax.servlet and javax.servlet.http are important packages containing the
classes and interfaces that are required for the operation of servlets. The most
commonly used interface from javax.servlet package is Servlet. Similarly most
commonly used class in this package is GenericServlet. The ServletRequest and
ServletResponse are another two commonly used interfaces defined in
javax.servlet package.

 In the javax.servlet.http package HttpServletRequest and HttpServletResponse
are two commonly used interfaces. The HttpServletRequest enables the servlet to
read data from the HTTP request and HttpServletResponse enables the servlet to
write data to HTTP response. The cookie and HttpServlet are two commonly used
classes that are defined in this package.

 We have given class name FirstServlet which should be derived from the class
HttpServlet. (Sometimes we can derive our class from GenericServlet).

 Then we have defined doGet method to which the HTTP request and response are
passed as parameters. The commonly used basic exceptions for the servlets are
IOException and ServletException.

 The MIME type is specified as using the setContentType() method. This method
sets the content type for the HTTP response to type. In this method “text/html” is
specified as the MIME type. This means that the browser should interpret the
contents as the HTML source code.

 Then an output stream is created using PrintWriter(). The getWriter() method is
used for obtaining the output stream. Anything written to this stream is sent to the

Advanced JAVA Programming 6 - 50 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

client as a response. Hence using the object of output stream ‘out’, we can write the
HTML source code in println method as HTTP response.

How to execute Servlet program ?

Step 1 : Compile the above program using the javac command at command prompt.
 D:\test>javac FirstServlet.java

The class file for this program gets generated.

Step 2 : Before running any servlet program, it is necessary to have

1. JDK installed

2. Tomcat installed.

3. Class path for above two packages must be set.

For Tomcat installation, I prefer to install the package XAMPP. The XAMP contains a
directory for tomcat. The XAMPP package contains Apache Web server, MySQL, PHP
and Perl support. It can work on both Windows and Linux operating System.

Step 3 : Copy the class file generated in Step 1 to the path
 C : \xampp\tomcat\webapps\examples\WEB-INF\classes

Step 4 : Go to the directory
C : \xampp\tomcat\webapps\examples\WEB-INF
Open web.xml file and edit it as follows
<servlet>
 <servlet-name>FirstServlet</servlet-name>
 <servlet-class> FirstServlet </servlet-class>
</servlet>
…
…
…
<servlet-mapping>
 <servlet-name> FirstServlet </servlet-name>
 <url-pattern>/servlet/ FirstServlet </url-pattern>
 </servlet-mapping>

The web.xml file is popularly known as deployment descriptor. This is basically the
configuration file that describes how to map the URL of web application to servlet.
<servlet>

 <servlet-name>FirstServlet</servlet-name>

Internal alias Name

Advanced JAVA Programming 6 - 51 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 <servlet-class> FirstServlet </servlet-class>
 </servlet>
…
…
…

<servlet-mapping>
 <servlet-name> FirstServlet </servlet-name>

 <url-pattern>/servlet/ FirstServlet </url-pattern>
 </servlet-mapping>

The Servlet comes with two alias names, internal and external. The internal name is

used by the Tomcat and the external name is given (to be written in <FORM> tag of

HTML file) to the client to invoke the Servlet on the server. That is, there exists alias to

alias. All this is for security. Observe, the names are given in two different XML tags, in

the web.xml file, to make it difficult for hacking.

To invoke the FirstServlet Servlet, the client calls the server with the name

servlet/FirstServlet.

When servlet/FirstServlet call reaches the server, the Tomcat server opens the

web.xml file to check the deployment particulars. Searches such a <servlet-mapping> tag

that matches servlet/FirstServlet. servlet/FirstServlet is exchanged with FirstServlet.

Then, searches such a <servlet> tag that matches FirstServlet and exchanges with

FirstServlet class. Now the server, loads FirstServlet Servlet, executes and sends the

output of execution as response to client.

Step 5 : Start tomcat and xampp

Step 6 : Open web browser and type the command
 http ://localhost/examples/servlet/FirstServlet

The output will be

Actual Name of server

Internal alias Name

External alias Name

Advanced JAVA Programming 6 - 52 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 Output

 Review Questions

1. What is servlets ? Explain how it works ?
2. Explain the advantages of servlets.
3. Explain the life cycle methods of servlets.

 6.15 Handling HTTP Requests and Response

 Many times we need to pass some information from web browser to Web server. In
such case, the HTML document containing the FORM is written which sends the
data to the servlet present on the web server.

 To make the form works with Java servlet, we need to specify the following
attributes for the

<form> tag :

i) method="method name": To send the form data as an HTTP POST request to the
server.

ii) action="URL/address of the servlet": Specifies relative URL of the servlet which
is responsible for handling data posted from this form.

 The browser uses two methods to pass this information to web server. These
methods are GET Method and POST Method.

i) GET method : The GET method sends user information along with ? symbol
called query string. For instance

 http://localhost/hello?user = aaaa&age = 20

 In servlet, this information is processed using doGet() method.

Advanced JAVA Programming 6 - 53 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

ii) POST method : This is the most reliable method of sending user information to
the server from HTML form. Servlet handles this request using doPost method.

Difference between GET and POST

GET POST

Using GET request limited amount of information

can be sent.

Using POST large amount of information can

be sent.

GET request is not secured as information is visible

in URL.

This is a secured request.

This request is can be bookmarked. This request can not be bookmarked.

This request is more efficient. This request is less efficient.

How does servlet read form data ?

 Servlet makes use of following three methods to read the data entered by the user
on the HTML form

1. getParameter() - You call request.getParameter() method to get the value of a
form parameter.

2. getParameterValues() - Call this method if the parameter appears more than
once and returns multiple values, for example checkbox.

3. getParameterNames() - Call this method if you want a complete list of all
parameters in the current request.

Programming Examples

 Example 6.15.1 Write a HTML that shows the following list :
C,C++,JAVA,C#
Define a form that contains a select statement and submit button. If the user selects the java and
press the submit the web page displays “The selected language is Java”.
Write a servlet program using HttpServlet and doGet method.

Solution : We will write two source files first one is the HTML file named test.html in

which the list of all the desired languages is displayed along with the submit button. User

has to select the language of his choice and then press the submit button.

This data made by this request will be received by the servlet named

my_choiceservlet.java which reads the selected parameter and displays the message

about the selection made. The source files are as follows -

Advanced JAVA Programming 6 - 54 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

test.html

<html>
 <body>
 <center>
 <form name="form1" method=GET
 action="http://localhost:4040/servlets-examples/servlet/my_choiceservlet">
 Language:
 <select name="Language" size="1">
 <option value="C">C</option>
 <option value="C++">C++</option>
 <option value="Java">Java</option>
 <option value="C#">C#</option>
 </select>

 <input type="submit" value="Submit">
 </form>
 </body>
</html>
my_choiceservlet.java

import java.io.*;
importjavax.servlet.*;
importjavax.servlet.http.*;
public class my_choiceservlet extends HttpServlet
{
 public void doGet(HttpServletRequestreq,HttpServletResponse res)
 throwsServletException,IOException
 {
 String lang=req.getParameter("Language");
 res.setContentType("text/html");
 PrintWriter out=res.getWriter();
 out.println("The selected language is "+lang);
 out.close();
 }
}

Advanced JAVA Programming 6 - 55 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

On clicking the submit button we will get following output.

 Example 6.15.2 Write HTML form to read user name and password. This data is sent to the
servlet. If the correct user name and password is given then welcome him/her by his/her name
otherwise display the message for invalid user.
Solution :

Step 1 : Create HTML form for accepting user name and password
Input.html

<html>
<head>
</head>
<body>
<form action="http://localhost/examples/servlets/servlet/Welcome" method ="get">
User Name:<input type="text" name="uname"/>

Password:<input type="password" name="pwd"/>
<input type="submit" value="Submit"/>
</form>
</body>
</html>

Step 2 : Create the servlet program to read user name and password and validate it.
Welcome.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class Welcome extends HttpServlet
{

Advanced JAVA Programming 6 - 56 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

 public void doGet(HttpServletRequest req,HttpServletResponse res) throws
ServletException,IOException
 {
 PrintWriter out=res.getWriter();
 res.setContentType("text/html");

 String username=req.getParameter("uname");
 String password=req.getParameter("pwd");
 if ((username=="Ankita")&&(password=="1234"))
 out.print("Welcome "+username);
 else
 out.println("Invalid username");
 }
}

 Example 6.15.3 Write a servlet which accept two numbers using POST methods and display
the maximum of them.
Solution :

Step 1 : The HTML document for inputting two numbers is as follows -
NumbersInput.html

<html>
<head>
<body>
<div align="center">

 <form action="http ://localhost/examples/servlets/servlet/MaxNumber" method="post">
 Enter First Number :
 <input type="text" value="" name="Number1" size=’5’>

 Enter Second Number :
 <input type="text" value="" name="Number2" size=’5’>

 <input type="submit" value="Submit">
 </form>
</div>
</body>
</html>

Step 2 : The servlet code that handles the Post method and finds the maximum of the two
input numbers is as follows -

MaxNumber.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

Advanced JAVA Programming 6 - 57 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

public class MaxNumber extends HttpServlet
 {
 protected void doPost(HttpServletRequest req, HttpServletResponse res) throws
ServletException, IOException
 {
 res.setContentType(“text/html”);
 PrintWriter out=res.getWriter();

 // get request parameters for userID and password
 int a = Integer.parseInt(req.getParameter(“Number1"));
 int b = Integer.parseInt(req.getParameter(“Number2"));

 if (a>b)
 out.println(“<h4>The maximum number is:”+a+"</h4>");
 else
 out.println(“<h4>The maximum number is :”+b+"</h4>");

 }
}

Step 3 : The output is as follows –

 Review Question

1. Differentiate between GET and POST request.

 6.16 Multiple Choice Questions

Q.1 Which package contains the classes and interfaces required for Java networking ?

 a java.io b java.util

 c java.net d java.awt

Advanced JAVA Programming 6 - 58 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.2 Which methods are commonly used in ServerSocket class ?

 a public OutputStream getOutputStream()

 b public Socket accept()

 c public synchronized void close()

 d none of the above

Q.3 Which class is used to create servers that listen for either local client or remote
client programs ?

 a ServerSockets b httpServer

 c httpResponse d none of the above

Q.4 Which methods are commonly used in ServerSocket class ?

 a public OutputStream getOutputStream()

 b public Socket accept()

 c public synchronized void close()

 d none of the above

Q.5 Which of these is a protocol for breaking and sending packets to an address across
a network ?

 a TCP/IP b DNS

 c Socket d Proxy server

Q.6 How many ports of TCP/IP are reserved for specific protocols ?

 a 10 b 1024

 c 2048 d 512

Q.7 How many bits are in a single IP address ?

 a 8 b 16

 c 32 d 64

Q.8 URL stands for Uniform Resource Locator and represents a resource on the World
Wide Web, such as a Web page.

 a True b False

Q.9 Which of these class is used to encapsulate IP address and DNS ?

 a DatagramPacket b URL

 c InetAddress d ContentHandler

Advanced JAVA Programming 6 - 59 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.10 The DatagramSocket and DatagramPacket classes are not used for connection-less
socket programming.

 a True b False

Q.11 Which of these is a full form of DNS ?

 a Data Network Service b Data Name Service

 c Domain Network Service d Domain Name Service

Q.12 What is the output of this program ?
 import java.net.*;
 class networking {
 public static void main(String[] args) throws UnknownHostException {
 InetAddress obj1 = InetAddress.getByName("www.google.com");
 InetAddress obj2 = InetAddress.getByName("www.facebook.com");
 boolean x = obj1.equals(obj2);
 System.out.print(x);
 }
 }

 a 0 b 1

 c True d False

Q.13 The client in socket programming must know which informations ?

 a IP address of server b Port number

 c Both a and b d None of the above

Q.14 Datagram is basically an information but there is no guarantee of its content,
arrival or arrival time.

 a True b False

Q.15 What is the output of this program ?
 import java.net.*;
 class networking {
 public static void main(String[] args) throws UnknownHostException {
 InetAddress obj1 = InetAddress.getByName("www.google.com");
 InetAddress obj2 = InetAddress.getByName("www.google.com");
 boolean x = obj1.equals(obj2);
 System.out.print(x);
 }
 }

 a 0 b 1

 c True d False

Advanced JAVA Programming 6 - 60 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.16 Port number 80 is reserved for ____ protocol

 a FTP b HTTP

 c SMTP d Telnet

Q.17 While using the getLocalHost() method the exception ___ is thrown

 a UnknownHostException b NullHostException

 c LostHostException d IOException

Q.18 The class _______ is used for accessing the attributes of remote resource.

 a URLconnection b URL

 c URI d none of these

Q.19 The correct way of using ServerSocket is_____.

 a ServerSocket(int port)

 b ServerSocket(int port, int maxQueue)

 c ServerSocket(int port, int maxQueue, InetAddress localAddress)

 d All of these

Q.20 Which method of URL class represents a URL and it has complete set of methods
to manipulate URL in Java ?

 a java.net.URL b java.net.URLconnection

 c java.net.URI d None of the above

Q.21 The Java __________ specification defines an application programming interface
for communication between the web server and the application program.

 a servlet b randomise

 c applet d script

Q.22 Which method is used to specify before any lines that uses the PintWriter ?

 a setPageType() b setContextType()

 c setContentType() d setResponseType()

Q.23 What are the functions of Servlet container ?

 a Lifecycle management b Communication support

 c Multithreading support d All of the above

Q.24 What is bytecode ?

 a Machine-specific code b Java code

 c Machine-independent code d None of the mentioned

Advanced JAVA Programming 6 - 61 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.25 What type of servlets use these methods doGet(), doPost(), doHead, doDelete(),
doTrace() ?

 a Genereic Servlets b HttpServlets

 c All of the above d None of these

Q.26 Web server is used for loading the init() method of servlet.

 a True b False

Q.27 Which packages represent interfaces and classes for servlet API ?

 a javax.servlet b javax.servlet.http

 c Both a and b d None of these

Q.28 What is the lifecycle of a servlet ?

 a Servlet class is loaded

 b Servlet instance is created

 c init, Service, destroy method is invoked

 d All of these

Q.29 What is the difference between servlet and applet ?

 a servlets execute on servers while applets execute on browser

 b servlets create static pages while applets create dynamic pages

 c servlets can execute single request while applets execute multiple requests

 d None of these

Q.30 A deployment descriptor describes ______.

 a web component response settings

 b web component settings

 c web component request settings

 d All of these

Q.31 Which object is created by the web container at time of deploying the project ?

 a ServletConfig b ServletContext

 c Both a and b d None of the above

Advanced JAVA Programming 6 - 62 Networking

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Answer Keys for Multiple Choice Questions :

Q.1 c Q.2 b Q.3 a Q.4 b

Q.5 a Q.6 b Q.7 c Q.8 a

Q.9 c Q.10 b Q.11 d Q.12 d

Q.13 c Q.14 a Q.15 c Q.16 b

Q.17 a Q.18 a Q.19 d Q.20 a

Q.21 a Q.22 c Q.23 d Q.24 c

Q.25 b Q.26 a Q.27 c Q.28 d

Q.29 a Q.30 b Q.31 b

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

SOLVED MODEL QUESTION PAPER (In Sem)
Advanced JAVA Programming

T.E. (E & Tc) Semester - VI (Elective - II) (As Per 2019 Pattern)
Time : 1 Hour] [Maximum Marks : 30

N. B. :
i) Attempt Q.1 or Q.2, Q.3 or Q.4.
ii) Neat diagrams must be drawn wherever necessary.
iii) Figures to the right side indicate full marks.
iv) Assume suitable data, if necessary.

Q.1 a) Differentiate applet and application with any four points. (Refer section 1.1) [4]

 b) Explain any three applet tags. (Refer section 1.3) [3]

 c) Explain with suitable example how to create and execute an applet program.

(Refer section 1.4) [8]
OR

Q.2 a) Explain applet life cycle with suitable diagram. (Refer section 1.2) [5]

 b) Explain getDocumentBase() and getCodeBase() functions with suitable examples

 (Refer section 1.6) [4]

 c) How can parameters be passed to an applet ? Write an applet to accept user name in
the form of parameter and print ‘Hello < username >’.

 (Refer example 1.5.1) [6]

Q.3 a) Explain event classes. (Refer section 2.3) [4]

 b) What method is used to distinguish between single, double and triple mouse clicks ?
Illustrate. (Refer example 2.6.1) [3]

 c) Explain event delegation model with some illustrative example.

(Refer section 2.5) [8]
OR

Q.4 a) What is AWT ? Enlist the limitations of AWT. (Refer sections 2.10 and 2.12) [3]

 b) Write a Java program to draw a rectangle using AWT graphics object.

(Refer section 2.17.2) [5]

 c) What is mouse event ? Write a Java program to implement the handling of mouse
events. (Refer section 2.6) [7]

(M - 1)

Advanced JAVA Programming M - 2 Solved Model Question Papers

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Time : 2
1
2 Hours] [Maximum Marks : 70

N. B. :

i) Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or Q.8.

ii) Neat diagrams must be drawn wherever necessary.

iii) Figures to the right side indicate full marks.

iv) Assume suitable data, if necessary.

Q.1 a) Write a JFrame with a hello world program. (Refer example 3.4.1) [5]

 b) Write a program to create product enquiry form using frames.

 (Refer example 3.4.3) [8]

 c) Explain JButton class with suitable example. (Refer section 3.4.6) [5]

OR

Q.2 a) Explain the different types of dialog boxes used in Java. (Refer section 3.4.14) [5]

 b) Write a Java program to demonstrate ArrayList. (Refer section 3.8.1) [5]

 c) With suitable example explain JMenu in Java. (Refer section 3.4.13) [8]

Q.3 a) Explain JDBC architecture in detail. (Refer section 4.3) [5]

 b) Explain executeQuery() and executeUpdate() method in JDBC.

 (Refer section 4.9) [5]

 c) Explain different types of JDBC drivers. (Refer section 4.2) [7]

OR

Q.4 a) Write a JDBC program to demonstrate CREATE Statement.(Refer section 4.9.2) [5]

 b) Write a short note on - Resultset interface. (Refer section 4.11) [5]

 c) What is prepared statement ? Explain it in detail with illustrative example.

 (Refer section 4.10.1) [7]

SOLVED MODEL QUESTION PAPER (End Sem)
Advanced JAVA Programming

T.E. (E & Tc) Semester - VI (Elective - II) (As Per 2019 Pattern)

Advanced JAVA Programming M - 3 Solved Model Question Papers

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

Q.5 a) Explain RMI registry. (Refer section 5.3) [4]

 b) What is RMI ? Explain architecture of RMI. (Refer sections 5.1 and 5.2) [8]

 c) Write a RMI application in which the client can send a message to the server.

 (Refer example 5.12.2) [6]

OR

Q.6 a) Write short note on - Naming and directory services. (Refer section 5.7) [8]

 b) Explain the use of RMI in examination control system in which the server has all the

 student information and the student objects can be accessed from any client.

 (Refer example 5.12.4) [10]

Q.7 a) Explain networking classes and interfaces. (Refer section 6.1) [6]

 b) What is proxy servers ? Explain. (Refer section 6.2.3) [6]

 c) Write a Java program to find the IP address of your machine.

 (Refer example 6.3.1) [5]

OR

Q.8 a) What are factory and instance methods ? Explain. (Refer section 6.3) [8]

 b) Write a TCP socket programming application in which client sends some message to
 the server and server sends the acknowledgement to the client.

 (Refer example 6.11.2) [9]

Advanced JAVA Programming M - 4 Solved Model Question Papers

TECHNICAL PUBLICATIONS® - an up-thrust for knowledge

